1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![forbid(unsafe_code)]
#![doc(
    html_logo_url = "https://bevyengine.org/assets/icon.png",
    html_favicon_url = "https://bevyengine.org/assets/icon.png"
)]

//! Animation for the game engine Bevy

mod animatable;
mod graph;
mod transition;
mod util;

use std::cell::RefCell;
use std::collections::BTreeMap;
use std::hash::{Hash, Hasher};
use std::iter;
use std::ops::{Add, Mul};

use bevy_app::{App, Plugin, PostUpdate};
use bevy_asset::{Asset, AssetApp, Assets, Handle};
use bevy_core::Name;
use bevy_ecs::entity::MapEntities;
use bevy_ecs::prelude::*;
use bevy_ecs::reflect::ReflectMapEntities;
use bevy_math::{FloatExt, Quat, Vec3};
use bevy_reflect::Reflect;
use bevy_render::mesh::morph::MorphWeights;
use bevy_time::Time;
use bevy_transform::{prelude::Transform, TransformSystem};
use bevy_utils::hashbrown::HashMap;
use bevy_utils::{
    tracing::{error, trace},
    NoOpHash,
};
use fixedbitset::FixedBitSet;
use graph::{AnimationGraph, AnimationNodeIndex};
use petgraph::graph::NodeIndex;
use petgraph::Direction;
use prelude::{AnimationGraphAssetLoader, AnimationTransitions};
use thread_local::ThreadLocal;
use uuid::Uuid;

#[allow(missing_docs)]
pub mod prelude {
    #[doc(hidden)]
    pub use crate::{
        animatable::*, graph::*, transition::*, AnimationClip, AnimationPlayer, AnimationPlugin,
        Interpolation, Keyframes, VariableCurve,
    };
}

use crate::transition::{advance_transitions, expire_completed_transitions};

/// The [UUID namespace] of animation targets (e.g. bones).
///
/// [UUID namespace]: https://en.wikipedia.org/wiki/Universally_unique_identifier#Versions_3_and_5_(namespace_name-based)
pub static ANIMATION_TARGET_NAMESPACE: Uuid = Uuid::from_u128(0x3179f519d9274ff2b5966fd077023911);

/// List of keyframes for one of the attribute of a [`Transform`].
#[derive(Reflect, Clone, Debug)]
pub enum Keyframes {
    /// Keyframes for rotation.
    Rotation(Vec<Quat>),
    /// Keyframes for translation.
    Translation(Vec<Vec3>),
    /// Keyframes for scale.
    Scale(Vec<Vec3>),
    /// Keyframes for morph target weights.
    ///
    /// Note that in `.0`, each contiguous `target_count` values is a single
    /// keyframe representing the weight values at given keyframe.
    ///
    /// This follows the [glTF design].
    ///
    /// [glTF design]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#animations
    Weights(Vec<f32>),
}

impl Keyframes {
    /// Returns the number of keyframes.
    pub fn len(&self) -> usize {
        match self {
            Keyframes::Weights(vec) => vec.len(),
            Keyframes::Translation(vec) | Keyframes::Scale(vec) => vec.len(),
            Keyframes::Rotation(vec) => vec.len(),
        }
    }

    /// Returns true if the number of keyframes is zero.
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }
}

/// Describes how an attribute of a [`Transform`] or [`MorphWeights`] should be animated.
///
/// `keyframe_timestamps` and `keyframes` should have the same length.
#[derive(Reflect, Clone, Debug)]
pub struct VariableCurve {
    /// Timestamp for each of the keyframes.
    pub keyframe_timestamps: Vec<f32>,
    /// List of the keyframes.
    ///
    /// The representation will depend on the interpolation type of this curve:
    ///
    /// - for `Interpolation::Step` and `Interpolation::Linear`, each keyframe is a single value
    /// - for `Interpolation::CubicSpline`, each keyframe is made of three values for `tangent_in`,
    /// `keyframe_value` and `tangent_out`
    pub keyframes: Keyframes,
    /// Interpolation method to use between keyframes.
    pub interpolation: Interpolation,
}

impl VariableCurve {
    /// Find the index of the keyframe at or before the current time.
    ///
    /// Returns [`None`] if the curve is finished or not yet started.
    /// To be more precise, this returns [`None`] if the frame is at or past the last keyframe:
    /// we cannot get the *next* keyframe to interpolate to in that case.
    pub fn find_current_keyframe(&self, seek_time: f32) -> Option<usize> {
        // An Ok(keyframe_index) result means an exact result was found by binary search
        // An Err result means the keyframe was not found, and the index is the keyframe
        // PERF: finding the current keyframe can be optimised
        let search_result = self
            .keyframe_timestamps
            .binary_search_by(|probe| probe.partial_cmp(&seek_time).unwrap());

        // Subtract one for zero indexing!
        let last_keyframe = self.keyframe_timestamps.len() - 1;

        // We want to find the index of the keyframe before the current time
        // If the keyframe is past the second-to-last keyframe, the animation cannot be interpolated.
        let step_start = match search_result {
            // An exact match was found, and it is the last keyframe (or something has gone terribly wrong).
            // This means that the curve is finished.
            Ok(n) if n >= last_keyframe => return None,
            // An exact match was found, and it is not the last keyframe.
            Ok(i) => i,
            // No exact match was found, and the seek_time is before the start of the animation.
            // This occurs because the binary search returns the index of where we could insert a value
            // without disrupting the order of the vector.
            // If the value is less than the first element, the index will be 0.
            Err(0) => return None,
            // No exact match was found, and it was after the last keyframe.
            // The curve is finished.
            Err(n) if n > last_keyframe => return None,
            // No exact match was found, so return the previous keyframe to interpolate from.
            Err(i) => i - 1,
        };

        // Consumers need to be able to interpolate between the return keyframe and the next
        assert!(step_start < self.keyframe_timestamps.len());

        Some(step_start)
    }
}

/// Interpolation method to use between keyframes.
#[derive(Reflect, Clone, Debug)]
pub enum Interpolation {
    /// Linear interpolation between the two closest keyframes.
    Linear,
    /// Step interpolation, the value of the start keyframe is used.
    Step,
    /// Cubic spline interpolation. The value of the two closest keyframes is used, with the out
    /// tangent of the start keyframe and the in tangent of the end keyframe.
    CubicSpline,
}

/// A list of [`VariableCurve`]s and the [`AnimationTargetId`]s to which they
/// apply.
///
/// Because animation clips refer to targets by UUID, they can target any
/// [`AnimationTarget`] with that ID.
#[derive(Asset, Reflect, Clone, Debug, Default)]
pub struct AnimationClip {
    curves: AnimationCurves,
    duration: f32,
}

/// A mapping from [`AnimationTargetId`] (e.g. bone in a skinned mesh) to the
/// animation curves.
pub type AnimationCurves = HashMap<AnimationTargetId, Vec<VariableCurve>, NoOpHash>;

/// A unique [UUID] for an animation target (e.g. bone in a skinned mesh).
///
/// The [`AnimationClip`] asset and the [`AnimationTarget`] component both use
/// this to refer to targets (e.g. bones in a skinned mesh) to be animated.
///
/// When importing an armature or an animation clip, asset loaders typically use
/// the full path name from the armature to the bone to generate these UUIDs.
/// The ID is unique to the full path name and based only on the names. So, for
/// example, any imported armature with a bone at the root named `Hips` will
/// assign the same [`AnimationTargetId`] to its root bone. Likewise, any
/// imported animation clip that animates a root bone named `Hips` will
/// reference the same [`AnimationTargetId`]. Any animation is playable on any
/// armature as long as the bone names match, which allows for easy animation
/// retargeting.
///
/// Note that asset loaders generally use the *full* path name to generate the
/// [`AnimationTargetId`]. Thus a bone named `Chest` directly connected to a
/// bone named `Hips` will have a different ID from a bone named `Chest` that's
/// connected to a bone named `Stomach`.
///
/// [UUID]: https://en.wikipedia.org/wiki/Universally_unique_identifier
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Reflect, Debug)]
pub struct AnimationTargetId(pub Uuid);

impl Hash for AnimationTargetId {
    fn hash<H: Hasher>(&self, state: &mut H) {
        let (hi, lo) = self.0.as_u64_pair();
        state.write_u64(hi ^ lo);
    }
}

/// An entity that can be animated by an [`AnimationPlayer`].
///
/// These are frequently referred to as *bones* or *joints*, because they often
/// refer to individually-animatable parts of an armature.
///
/// Asset loaders for armatures are responsible for adding these as necessary.
/// Typically, they're generated from hashed versions of the entire name path
/// from the root of the armature to the bone. See the [`AnimationTargetId`]
/// documentation for more details.
///
/// By convention, asset loaders add [`AnimationTarget`] components to the
/// descendants of an [`AnimationPlayer`], as well as to the [`AnimationPlayer`]
/// entity itself, but Bevy doesn't require this in any way. So, for example,
/// it's entirely possible for an [`AnimationPlayer`] to animate a target that
/// it isn't an ancestor of. If you add a new bone to or delete a bone from an
/// armature at runtime, you may want to update the [`AnimationTarget`]
/// component as appropriate, as Bevy won't do this automatically.
///
/// Note that each entity can only be animated by one animation player at a
/// time. However, you can change [`AnimationTarget`]'s `player` property at
/// runtime to change which player is responsible for animating the entity.
#[derive(Clone, Copy, Component, Reflect)]
#[reflect(Component, MapEntities)]
pub struct AnimationTarget {
    /// The ID of this animation target.
    ///
    /// Typically, this is derived from the path.
    pub id: AnimationTargetId,

    /// The entity containing the [`AnimationPlayer`].
    pub player: Entity,
}

impl AnimationClip {
    #[inline]
    /// [`VariableCurve`]s for each animation target. Indexed by the [`AnimationTargetId`].
    pub fn curves(&self) -> &AnimationCurves {
        &self.curves
    }

    #[inline]
    /// Get mutable references of [`VariableCurve`]s for each animation target. Indexed by the [`AnimationTargetId`].
    pub fn curves_mut(&mut self) -> &mut AnimationCurves {
        &mut self.curves
    }

    /// Gets the curves for a single animation target.
    ///
    /// Returns `None` if this clip doesn't animate the target.
    #[inline]
    pub fn curves_for_target(
        &self,
        target_id: AnimationTargetId,
    ) -> Option<&'_ Vec<VariableCurve>> {
        self.curves.get(&target_id)
    }

    /// Gets mutable references of the curves for a single animation target.
    ///
    /// Returns `None` if this clip doesn't animate the target.
    #[inline]
    pub fn curves_for_target_mut(
        &mut self,
        target_id: AnimationTargetId,
    ) -> Option<&'_ mut Vec<VariableCurve>> {
        self.curves.get_mut(&target_id)
    }

    /// Duration of the clip, represented in seconds.
    #[inline]
    pub fn duration(&self) -> f32 {
        self.duration
    }

    /// Set the duration of the clip in seconds.
    #[inline]
    pub fn set_duration(&mut self, duration_sec: f32) {
        self.duration = duration_sec;
    }

    /// Adds a [`VariableCurve`] to an [`AnimationTarget`] named by an
    /// [`AnimationTargetId`].
    ///
    /// If the curve extends beyond the current duration of this clip, this
    /// method lengthens this clip to include the entire time span that the
    /// curve covers.
    pub fn add_curve_to_target(&mut self, target_id: AnimationTargetId, curve: VariableCurve) {
        // Update the duration of the animation by this curve duration if it's longer
        self.duration = self
            .duration
            .max(*curve.keyframe_timestamps.last().unwrap_or(&0.0));
        self.curves.entry(target_id).or_default().push(curve);
    }
}

/// Repetition behavior of an animation.
#[derive(Reflect, Debug, PartialEq, Eq, Copy, Clone, Default)]
pub enum RepeatAnimation {
    /// The animation will finish after running once.
    #[default]
    Never,
    /// The animation will finish after running "n" times.
    Count(u32),
    /// The animation will never finish.
    Forever,
}

/// An animation that an [`AnimationPlayer`] is currently either playing or was
/// playing, but is presently paused.
///
/// An stopped animation is considered no longer active.
#[derive(Debug, Clone, Copy, Reflect)]
pub struct ActiveAnimation {
    /// The factor by which the weight from the [`AnimationGraph`] is multiplied.
    weight: f32,
    /// The actual weight of this animation this frame, taking the
    /// [`AnimationGraph`] into account.
    computed_weight: f32,
    repeat: RepeatAnimation,
    speed: f32,
    /// Total time the animation has been played.
    ///
    /// Note: Time does not increase when the animation is paused or after it has completed.
    elapsed: f32,
    /// The timestamp inside of the animation clip.
    ///
    /// Note: This will always be in the range [0.0, animation clip duration]
    seek_time: f32,
    /// Number of times the animation has completed.
    /// If the animation is playing in reverse, this increments when the animation passes the start.
    completions: u32,
    paused: bool,
}

impl Default for ActiveAnimation {
    fn default() -> Self {
        Self {
            weight: 1.0,
            computed_weight: 1.0,
            repeat: RepeatAnimation::default(),
            speed: 1.0,
            elapsed: 0.0,
            seek_time: 0.0,
            completions: 0,
            paused: false,
        }
    }
}

impl ActiveAnimation {
    /// Check if the animation has finished, based on its repetition behavior and the number of times it has repeated.
    ///
    /// Note: An animation with `RepeatAnimation::Forever` will never finish.
    #[inline]
    pub fn is_finished(&self) -> bool {
        match self.repeat {
            RepeatAnimation::Forever => false,
            RepeatAnimation::Never => self.completions >= 1,
            RepeatAnimation::Count(n) => self.completions >= n,
        }
    }

    /// Update the animation given the delta time and the duration of the clip being played.
    #[inline]
    fn update(&mut self, delta: f32, clip_duration: f32) {
        if self.is_finished() {
            return;
        }

        self.elapsed += delta;
        self.seek_time += delta * self.speed;

        let over_time = self.speed > 0.0 && self.seek_time >= clip_duration;
        let under_time = self.speed < 0.0 && self.seek_time < 0.0;

        if over_time || under_time {
            self.completions += 1;

            if self.is_finished() {
                return;
            }
        }
        if self.seek_time >= clip_duration {
            self.seek_time %= clip_duration;
        }
        // Note: assumes delta is never lower than -clip_duration
        if self.seek_time < 0.0 {
            self.seek_time += clip_duration;
        }
    }

    /// Reset back to the initial state as if no time has elapsed.
    pub fn replay(&mut self) {
        self.completions = 0;
        self.elapsed = 0.0;
        self.seek_time = 0.0;
    }

    /// Returns the current weight of this animation.
    pub fn weight(&self) -> f32 {
        self.weight
    }

    /// Sets the weight of this animation.
    pub fn set_weight(&mut self, weight: f32) {
        self.weight = weight;
    }

    /// Pause the animation.
    pub fn pause(&mut self) -> &mut Self {
        self.paused = true;
        self
    }

    /// Unpause the animation.
    pub fn resume(&mut self) -> &mut Self {
        self.paused = false;
        self
    }

    /// Returns true if this animation is currently paused.
    ///
    /// Note that paused animations are still [`ActiveAnimation`]s.
    #[inline]
    pub fn is_paused(&self) -> bool {
        self.paused
    }

    /// Sets the repeat mode for this playing animation.
    pub fn set_repeat(&mut self, repeat: RepeatAnimation) -> &mut Self {
        self.repeat = repeat;
        self
    }

    /// Marks this animation as repeating forever.
    pub fn repeat(&mut self) -> &mut Self {
        self.set_repeat(RepeatAnimation::Forever)
    }

    /// Returns the repeat mode assigned to this active animation.
    pub fn repeat_mode(&self) -> RepeatAnimation {
        self.repeat
    }

    /// Returns the number of times this animation has completed.
    pub fn completions(&self) -> u32 {
        self.completions
    }

    /// Returns true if the animation is playing in reverse.
    pub fn is_playback_reversed(&self) -> bool {
        self.speed < 0.0
    }

    /// Returns the speed of the animation playback.
    pub fn speed(&self) -> f32 {
        self.speed
    }

    /// Sets the speed of the animation playback.
    pub fn set_speed(&mut self, speed: f32) -> &mut Self {
        self.speed = speed;
        self
    }

    /// Returns the amount of time the animation has been playing.
    pub fn elapsed(&self) -> f32 {
        self.elapsed
    }

    /// Returns the seek time of the animation.
    ///
    /// This is nonnegative and no more than the clip duration.
    pub fn seek_time(&self) -> f32 {
        self.seek_time
    }

    /// Seeks to a specific time in the animation.
    pub fn seek_to(&mut self, seek_time: f32) -> &mut Self {
        self.seek_time = seek_time;
        self
    }

    /// Seeks to the beginning of the animation.
    pub fn rewind(&mut self) -> &mut Self {
        self.seek_time = 0.0;
        self
    }
}

/// Animation controls
#[derive(Component, Default, Reflect)]
#[reflect(Component)]
pub struct AnimationPlayer {
    /// We use a `BTreeMap` instead of a `HashMap` here to ensure a consistent
    /// ordering when applying the animations.
    active_animations: BTreeMap<AnimationNodeIndex, ActiveAnimation>,
    blend_weights: HashMap<AnimationNodeIndex, f32>,
}

// This is needed since `#[derive(Clone)]` does not generate optimized `clone_from`.
impl Clone for AnimationPlayer {
    fn clone(&self) -> Self {
        Self {
            active_animations: self.active_animations.clone(),
            blend_weights: self.blend_weights.clone(),
        }
    }

    fn clone_from(&mut self, source: &Self) {
        self.active_animations.clone_from(&source.active_animations);
        self.blend_weights.clone_from(&source.blend_weights);
    }
}

/// The components that we might need to read or write during animation of each
/// animation target.
struct AnimationTargetContext<'a> {
    entity: Entity,
    target: &'a AnimationTarget,
    name: Option<&'a Name>,
    transform: Option<Mut<'a, Transform>>,
    morph_weights: Option<Mut<'a, MorphWeights>>,
}

/// Information needed during the traversal of the animation graph in
/// [`advance_animations`].
#[derive(Default)]
pub struct AnimationGraphEvaluator {
    /// The stack used for the depth-first search of the graph.
    dfs_stack: Vec<NodeIndex>,
    /// The list of visited nodes during the depth-first traversal.
    dfs_visited: FixedBitSet,
    /// Accumulated weights for each node.
    weights: Vec<f32>,
}

thread_local! {
    /// A cached per-thread copy of the graph evaluator.
    ///
    /// Caching the evaluator lets us save allocation traffic from frame to
    /// frame.
    static ANIMATION_GRAPH_EVALUATOR: RefCell<AnimationGraphEvaluator> =
        RefCell::new(AnimationGraphEvaluator::default());
}

impl AnimationPlayer {
    /// Start playing an animation, restarting it if necessary.
    pub fn start(&mut self, animation: AnimationNodeIndex) -> &mut ActiveAnimation {
        self.active_animations.entry(animation).or_default()
    }

    /// Start playing an animation, unless the requested animation is already playing.
    pub fn play(&mut self, animation: AnimationNodeIndex) -> &mut ActiveAnimation {
        let playing_animation = self.active_animations.entry(animation).or_default();
        playing_animation.weight = 1.0;
        playing_animation
    }

    /// Stops playing the given animation, removing it from the list of playing
    /// animations.
    pub fn stop(&mut self, animation: AnimationNodeIndex) -> &mut Self {
        self.active_animations.remove(&animation);
        self
    }

    /// Stops all currently-playing animations.
    pub fn stop_all(&mut self) -> &mut Self {
        self.active_animations.clear();
        self
    }

    /// Iterates through all animations that this [`AnimationPlayer`] is
    /// currently playing.
    pub fn playing_animations(
        &self,
    ) -> impl Iterator<Item = (&AnimationNodeIndex, &ActiveAnimation)> {
        self.active_animations.iter()
    }

    /// Iterates through all animations that this [`AnimationPlayer`] is
    /// currently playing, mutably.
    pub fn playing_animations_mut(
        &mut self,
    ) -> impl Iterator<Item = (&AnimationNodeIndex, &mut ActiveAnimation)> {
        self.active_animations.iter_mut()
    }

    /// Check if the given animation node is being played.
    pub fn is_playing_animation(&self, animation: AnimationNodeIndex) -> bool {
        self.active_animations.contains_key(&animation)
    }

    /// Check if all playing animations have finished, according to the repetition behavior.
    pub fn all_finished(&self) -> bool {
        self.active_animations
            .values()
            .all(|playing_animation| playing_animation.is_finished())
    }

    /// Check if all playing animations are paused.
    #[doc(alias = "is_paused")]
    pub fn all_paused(&self) -> bool {
        self.active_animations
            .values()
            .all(|playing_animation| playing_animation.is_paused())
    }

    /// Resume all playing animations.
    #[doc(alias = "pause")]
    pub fn pause_all(&mut self) -> &mut Self {
        for (_, playing_animation) in self.playing_animations_mut() {
            playing_animation.pause();
        }
        self
    }

    /// Resume all active animations.
    #[doc(alias = "resume")]
    pub fn resume_all(&mut self) -> &mut Self {
        for (_, playing_animation) in self.playing_animations_mut() {
            playing_animation.resume();
        }
        self
    }

    /// Rewinds all active animations.
    #[doc(alias = "rewind")]
    pub fn rewind_all(&mut self) -> &mut Self {
        for (_, playing_animation) in self.playing_animations_mut() {
            playing_animation.rewind();
        }
        self
    }

    /// Multiplies the speed of all active animations by the given factor.
    #[doc(alias = "set_speed")]
    pub fn adjust_speeds(&mut self, factor: f32) -> &mut Self {
        for (_, playing_animation) in self.playing_animations_mut() {
            let new_speed = playing_animation.speed() * factor;
            playing_animation.set_speed(new_speed);
        }
        self
    }

    /// Seeks all active animations forward or backward by the same amount.
    ///
    /// To seek forward, pass a positive value; to seek negative, pass a
    /// negative value. Values below 0.0 or beyond the end of the animation clip
    /// are clamped appropriately.
    #[doc(alias = "seek_to")]
    pub fn seek_all_by(&mut self, amount: f32) -> &mut Self {
        for (_, playing_animation) in self.playing_animations_mut() {
            let new_time = playing_animation.seek_time();
            playing_animation.seek_to(new_time + amount);
        }
        self
    }

    /// Returns the [`ActiveAnimation`] associated with the given animation
    /// node if it's currently playing.
    ///
    /// If the animation isn't currently active, returns `None`.
    pub fn animation(&self, animation: AnimationNodeIndex) -> Option<&ActiveAnimation> {
        self.active_animations.get(&animation)
    }

    /// Returns a mutable reference to the [`ActiveAnimation`] associated with
    /// the given animation node if it's currently active.
    ///
    /// If the animation isn't currently active, returns `None`.
    pub fn animation_mut(&mut self, animation: AnimationNodeIndex) -> Option<&mut ActiveAnimation> {
        self.active_animations.get_mut(&animation)
    }

    /// Returns true if the animation is currently playing or paused, or false
    /// if the animation is stopped.
    pub fn animation_is_playing(&self, animation: AnimationNodeIndex) -> bool {
        self.active_animations.contains_key(&animation)
    }
}

/// A system that advances the time for all playing animations.
pub fn advance_animations(
    time: Res<Time>,
    animation_clips: Res<Assets<AnimationClip>>,
    animation_graphs: Res<Assets<AnimationGraph>>,
    mut players: Query<(&mut AnimationPlayer, &Handle<AnimationGraph>)>,
    animation_graph_evaluator: Local<ThreadLocal<RefCell<AnimationGraphEvaluator>>>,
) {
    let delta_seconds = time.delta_seconds();
    players
        .par_iter_mut()
        .for_each(|(mut player, graph_handle)| {
            let Some(animation_graph) = animation_graphs.get(graph_handle) else {
                return;
            };

            // Tick animations, and schedule them.
            //
            // We use a thread-local here so we can reuse allocations across
            // frames.
            let mut evaluator = animation_graph_evaluator.get_or_default().borrow_mut();

            let AnimationPlayer {
                ref mut active_animations,
                ref blend_weights,
                ..
            } = *player;

            // Reset our state.
            evaluator.reset(animation_graph.root, animation_graph.graph.node_count());

            while let Some(node_index) = evaluator.dfs_stack.pop() {
                // Skip if we've already visited this node.
                if evaluator.dfs_visited.put(node_index.index()) {
                    continue;
                }

                let node = &animation_graph[node_index];

                // Calculate weight from the graph.
                let mut weight = node.weight;
                for parent_index in animation_graph
                    .graph
                    .neighbors_directed(node_index, Direction::Incoming)
                {
                    weight *= animation_graph[parent_index].weight;
                }
                evaluator.weights[node_index.index()] = weight;

                if let Some(active_animation) = active_animations.get_mut(&node_index) {
                    // Tick the animation if necessary.
                    if !active_animation.paused {
                        if let Some(ref clip_handle) = node.clip {
                            if let Some(clip) = animation_clips.get(clip_handle) {
                                active_animation.update(delta_seconds, clip.duration);
                            }
                        }
                    }

                    weight *= active_animation.weight;
                } else if let Some(&blend_weight) = blend_weights.get(&node_index) {
                    weight *= blend_weight;
                }

                // Write in the computed weight.
                if let Some(active_animation) = active_animations.get_mut(&node_index) {
                    active_animation.computed_weight = weight;
                }

                // Push children.
                evaluator.dfs_stack.extend(
                    animation_graph
                        .graph
                        .neighbors_directed(node_index, Direction::Outgoing),
                );
            }
        });
}

/// A system that modifies animation targets (e.g. bones in a skinned mesh)
/// according to the currently-playing animation.
pub fn animate_targets(
    clips: Res<Assets<AnimationClip>>,
    graphs: Res<Assets<AnimationGraph>>,
    players: Query<(&AnimationPlayer, &Handle<AnimationGraph>)>,
    mut targets: Query<(
        Entity,
        &AnimationTarget,
        Option<&Name>,
        AnyOf<(&mut Transform, &mut MorphWeights)>,
    )>,
) {
    // We use two queries here: one read-only query for animation players and
    // one read-write query for animation targets (e.g. bones). The
    // `AnimationPlayer` query is read-only shared memory accessible from all
    // animation targets, which are evaluated in parallel.

    // Iterate over all animation targets in parallel.
    targets
        .par_iter_mut()
        .for_each(|(id, target, name, (transform, morph_weights))| {
            let Ok((animation_player, animation_graph_handle)) = players.get(target.player) else {
                trace!(
                    "Either an animation player {:?} or a graph was missing for the target \
                     entity {:?} ({:?}); no animations will play this frame",
                    target.player,
                    id,
                    name,
                );
                return;
            };

            // The graph might not have loaded yet. Safely bail.
            let Some(animation_graph) = graphs.get(animation_graph_handle) else {
                return;
            };

            let mut target_context = AnimationTargetContext {
                entity: id,
                target,
                name,
                transform,
                morph_weights,
            };

            // Apply the animations one after another. The way we accumulate
            // weights ensures that the order we apply them in doesn't matter.
            //
            // Proof: Consider three animations A₀, A₁, A₂, … with weights w₀,
            // w₁, w₂, … respectively. We seek the value:
            //
            //     A₀w₀ + A₁w₁ + A₂w₂ + ⋯
            //
            // Defining lerp(a, b, t) = a + t(b - a), we have:
            //
            //                                    ⎛    ⎛          w₁   ⎞           w₂     ⎞
            //     A₀w₀ + A₁w₁ + A₂w₂ + ⋯ = ⋯ lerp⎜lerp⎜A₀, A₁, ⎯⎯⎯⎯⎯⎯⎯⎯⎟, A₂, ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎟ ⋯
            //                                    ⎝    ⎝        w₀ + w₁⎠      w₀ + w₁ + w₂⎠
            //
            // Each step of the following loop corresponds to one of the lerp
            // operations above.
            let mut total_weight = 0.0;
            for (&animation_graph_node_index, active_animation) in
                animation_player.active_animations.iter()
            {
                if active_animation.weight == 0.0 {
                    continue;
                }

                let Some(clip) = animation_graph
                    .get(animation_graph_node_index)
                    .and_then(|animation_graph_node| animation_graph_node.clip.as_ref())
                    .and_then(|animation_clip_handle| clips.get(animation_clip_handle))
                else {
                    continue;
                };

                let Some(curves) = clip.curves_for_target(target_context.target.id) else {
                    continue;
                };

                let weight = active_animation.computed_weight;
                total_weight += weight;

                target_context.apply(curves, weight / total_weight, active_animation.seek_time);
            }
        });
}

impl AnimationTargetContext<'_> {
    /// Applies a clip to a single animation target according to the
    /// [`AnimationTargetContext`].
    fn apply(&mut self, curves: &[VariableCurve], weight: f32, seek_time: f32) {
        for curve in curves {
            // Some curves have only one keyframe used to set a transform
            if curve.keyframe_timestamps.len() == 1 {
                self.apply_single_keyframe(curve, weight);
                return;
            }

            // Find the current keyframe
            let Some(step_start) = curve.find_current_keyframe(seek_time) else {
                return;
            };

            let timestamp_start = curve.keyframe_timestamps[step_start];
            let timestamp_end = curve.keyframe_timestamps[step_start + 1];
            // Compute how far we are through the keyframe, normalized to [0, 1]
            let lerp = f32::inverse_lerp(timestamp_start, timestamp_end, seek_time);

            self.apply_tweened_keyframe(
                curve,
                step_start,
                lerp,
                weight,
                timestamp_end - timestamp_start,
            );
        }
    }

    fn apply_single_keyframe(&mut self, curve: &VariableCurve, weight: f32) {
        match &curve.keyframes {
            Keyframes::Rotation(keyframes) => {
                if let Some(ref mut transform) = self.transform {
                    transform.rotation = transform.rotation.slerp(keyframes[0], weight);
                }
            }

            Keyframes::Translation(keyframes) => {
                if let Some(ref mut transform) = self.transform {
                    transform.translation = transform.translation.lerp(keyframes[0], weight);
                }
            }

            Keyframes::Scale(keyframes) => {
                if let Some(ref mut transform) = self.transform {
                    transform.scale = transform.scale.lerp(keyframes[0], weight);
                }
            }

            Keyframes::Weights(keyframes) => {
                let Some(ref mut morphs) = self.morph_weights else {
                    error!(
                        "Tried to animate morphs on {:?} ({:?}), but no `MorphWeights` was found",
                        self.entity, self.name,
                    );
                    return;
                };

                let target_count = morphs.weights().len();
                lerp_morph_weights(
                    morphs.weights_mut(),
                    get_keyframe(target_count, keyframes, 0).iter().copied(),
                    weight,
                );
            }
        }
    }

    fn apply_tweened_keyframe(
        &mut self,
        curve: &VariableCurve,
        step_start: usize,
        lerp: f32,
        weight: f32,
        duration: f32,
    ) {
        match (&curve.interpolation, &curve.keyframes) {
            (Interpolation::Step, Keyframes::Rotation(keyframes)) => {
                if let Some(ref mut transform) = self.transform {
                    transform.rotation = transform.rotation.slerp(keyframes[step_start], weight);
                }
            }

            (Interpolation::Linear, Keyframes::Rotation(keyframes)) => {
                let Some(ref mut transform) = self.transform else {
                    return;
                };

                let rot_start = keyframes[step_start];
                let mut rot_end = keyframes[step_start + 1];
                // Choose the smallest angle for the rotation
                if rot_end.dot(rot_start) < 0.0 {
                    rot_end = -rot_end;
                }
                // Rotations are using a spherical linear interpolation
                let rot = rot_start.normalize().slerp(rot_end.normalize(), lerp);
                transform.rotation = transform.rotation.slerp(rot, weight);
            }

            (Interpolation::CubicSpline, Keyframes::Rotation(keyframes)) => {
                let Some(ref mut transform) = self.transform else {
                    return;
                };

                let value_start = keyframes[step_start * 3 + 1];
                let tangent_out_start = keyframes[step_start * 3 + 2];
                let tangent_in_end = keyframes[(step_start + 1) * 3];
                let value_end = keyframes[(step_start + 1) * 3 + 1];
                let result = cubic_spline_interpolation(
                    value_start,
                    tangent_out_start,
                    tangent_in_end,
                    value_end,
                    lerp,
                    duration,
                );
                transform.rotation = transform.rotation.slerp(result.normalize(), weight);
            }

            (Interpolation::Step, Keyframes::Translation(keyframes)) => {
                if let Some(ref mut transform) = self.transform {
                    transform.translation =
                        transform.translation.lerp(keyframes[step_start], weight);
                }
            }

            (Interpolation::Linear, Keyframes::Translation(keyframes)) => {
                let Some(ref mut transform) = self.transform else {
                    return;
                };

                let translation_start = keyframes[step_start];
                let translation_end = keyframes[step_start + 1];
                let result = translation_start.lerp(translation_end, lerp);
                transform.translation = transform.translation.lerp(result, weight);
            }

            (Interpolation::CubicSpline, Keyframes::Translation(keyframes)) => {
                let Some(ref mut transform) = self.transform else {
                    return;
                };

                let value_start = keyframes[step_start * 3 + 1];
                let tangent_out_start = keyframes[step_start * 3 + 2];
                let tangent_in_end = keyframes[(step_start + 1) * 3];
                let value_end = keyframes[(step_start + 1) * 3 + 1];
                let result = cubic_spline_interpolation(
                    value_start,
                    tangent_out_start,
                    tangent_in_end,
                    value_end,
                    lerp,
                    duration,
                );
                transform.translation = transform.translation.lerp(result, weight);
            }

            (Interpolation::Step, Keyframes::Scale(keyframes)) => {
                if let Some(ref mut transform) = self.transform {
                    transform.scale = transform.scale.lerp(keyframes[step_start], weight);
                }
            }

            (Interpolation::Linear, Keyframes::Scale(keyframes)) => {
                let Some(ref mut transform) = self.transform else {
                    return;
                };

                let scale_start = keyframes[step_start];
                let scale_end = keyframes[step_start + 1];
                let result = scale_start.lerp(scale_end, lerp);
                transform.scale = transform.scale.lerp(result, weight);
            }

            (Interpolation::CubicSpline, Keyframes::Scale(keyframes)) => {
                let Some(ref mut transform) = self.transform else {
                    return;
                };

                let value_start = keyframes[step_start * 3 + 1];
                let tangent_out_start = keyframes[step_start * 3 + 2];
                let tangent_in_end = keyframes[(step_start + 1) * 3];
                let value_end = keyframes[(step_start + 1) * 3 + 1];
                let result = cubic_spline_interpolation(
                    value_start,
                    tangent_out_start,
                    tangent_in_end,
                    value_end,
                    lerp,
                    duration,
                );
                transform.scale = transform.scale.lerp(result, weight);
            }

            (Interpolation::Step, Keyframes::Weights(keyframes)) => {
                let Some(ref mut morphs) = self.morph_weights else {
                    return;
                };

                let target_count = morphs.weights().len();
                let morph_start = get_keyframe(target_count, keyframes, step_start);
                lerp_morph_weights(morphs.weights_mut(), morph_start.iter().copied(), weight);
            }

            (Interpolation::Linear, Keyframes::Weights(keyframes)) => {
                let Some(ref mut morphs) = self.morph_weights else {
                    return;
                };

                let target_count = morphs.weights().len();
                let morph_start = get_keyframe(target_count, keyframes, step_start);
                let morph_end = get_keyframe(target_count, keyframes, step_start + 1);
                let result = morph_start
                    .iter()
                    .zip(morph_end)
                    .map(|(a, b)| a.lerp(*b, lerp));
                lerp_morph_weights(morphs.weights_mut(), result, weight);
            }

            (Interpolation::CubicSpline, Keyframes::Weights(keyframes)) => {
                let Some(ref mut morphs) = self.morph_weights else {
                    return;
                };

                let target_count = morphs.weights().len();
                let morph_start = get_keyframe(target_count, keyframes, step_start * 3 + 1);
                let tangents_out_start = get_keyframe(target_count, keyframes, step_start * 3 + 2);
                let tangents_in_end = get_keyframe(target_count, keyframes, (step_start + 1) * 3);
                let morph_end = get_keyframe(target_count, keyframes, (step_start + 1) * 3 + 1);
                let result = morph_start
                    .iter()
                    .zip(tangents_out_start)
                    .zip(tangents_in_end)
                    .zip(morph_end)
                    .map(
                        |(((&value_start, &tangent_out_start), &tangent_in_end), &value_end)| {
                            cubic_spline_interpolation(
                                value_start,
                                tangent_out_start,
                                tangent_in_end,
                                value_end,
                                lerp,
                                duration,
                            )
                        },
                    );
                lerp_morph_weights(morphs.weights_mut(), result, weight);
            }
        }
    }
}

/// Update `weights` based on weights in `keyframe` with a linear interpolation
/// on `key_lerp`.
fn lerp_morph_weights(weights: &mut [f32], keyframe: impl Iterator<Item = f32>, key_lerp: f32) {
    let zipped = weights.iter_mut().zip(keyframe);
    for (morph_weight, keyframe) in zipped {
        *morph_weight = morph_weight.lerp(keyframe, key_lerp);
    }
}

/// Extract a keyframe from a list of keyframes by index.
///
/// # Panics
///
/// When `key_index * target_count` is larger than `keyframes`
///
/// This happens when `keyframes` is not formatted as described in
/// [`Keyframes::Weights`]. A possible cause is [`AnimationClip`] not being
/// meant to be used for the [`MorphWeights`] of the entity it's being applied to.
fn get_keyframe(target_count: usize, keyframes: &[f32], key_index: usize) -> &[f32] {
    let start = target_count * key_index;
    let end = target_count * (key_index + 1);
    &keyframes[start..end]
}

/// Helper function for cubic spline interpolation.
fn cubic_spline_interpolation<T>(
    value_start: T,
    tangent_out_start: T,
    tangent_in_end: T,
    value_end: T,
    lerp: f32,
    step_duration: f32,
) -> T
where
    T: Mul<f32, Output = T> + Add<Output = T>,
{
    value_start * (2.0 * lerp.powi(3) - 3.0 * lerp.powi(2) + 1.0)
        + tangent_out_start * (step_duration) * (lerp.powi(3) - 2.0 * lerp.powi(2) + lerp)
        + value_end * (-2.0 * lerp.powi(3) + 3.0 * lerp.powi(2))
        + tangent_in_end * step_duration * (lerp.powi(3) - lerp.powi(2))
}

/// Adds animation support to an app
#[derive(Default)]
pub struct AnimationPlugin;

impl Plugin for AnimationPlugin {
    fn build(&self, app: &mut App) {
        app.init_asset::<AnimationClip>()
            .init_asset::<AnimationGraph>()
            .init_asset_loader::<AnimationGraphAssetLoader>()
            .register_asset_reflect::<AnimationClip>()
            .register_asset_reflect::<AnimationGraph>()
            .register_type::<AnimationPlayer>()
            .register_type::<AnimationTarget>()
            .register_type::<AnimationTransitions>()
            .register_type::<NodeIndex>()
            .add_systems(
                PostUpdate,
                (
                    advance_transitions,
                    advance_animations,
                    animate_targets,
                    expire_completed_transitions,
                )
                    .chain()
                    .before(TransformSystem::TransformPropagate),
            );
    }
}

impl AnimationTargetId {
    /// Creates a new [`AnimationTargetId`] by hashing a list of names.
    ///
    /// Typically, this will be the path from the animation root to the
    /// animation target (e.g. bone) that is to be animated.
    pub fn from_names<'a>(names: impl Iterator<Item = &'a Name>) -> Self {
        let mut blake3 = blake3::Hasher::new();
        blake3.update(ANIMATION_TARGET_NAMESPACE.as_bytes());
        for name in names {
            blake3.update(name.as_bytes());
        }
        let hash = blake3.finalize().as_bytes()[0..16].try_into().unwrap();
        Self(*uuid::Builder::from_sha1_bytes(hash).as_uuid())
    }

    /// Creates a new [`AnimationTargetId`] by hashing a single name.
    pub fn from_name(name: &Name) -> Self {
        Self::from_names(iter::once(name))
    }
}

impl From<&Name> for AnimationTargetId {
    fn from(name: &Name) -> Self {
        AnimationTargetId::from_name(name)
    }
}

impl MapEntities for AnimationTarget {
    fn map_entities<M: EntityMapper>(&mut self, entity_mapper: &mut M) {
        self.player = entity_mapper.map_entity(self.player);
    }
}

impl AnimationGraphEvaluator {
    // Starts a new depth-first search.
    fn reset(&mut self, root: AnimationNodeIndex, node_count: usize) {
        self.dfs_stack.clear();
        self.dfs_stack.push(root);

        self.dfs_visited.grow(node_count);
        self.dfs_visited.clear();

        self.weights.clear();
        self.weights.extend(iter::repeat(0.0).take(node_count));
    }
}

#[cfg(test)]
mod tests {
    use crate::VariableCurve;
    use bevy_math::Vec3;

    fn test_variable_curve() -> VariableCurve {
        let keyframe_timestamps = vec![1.0, 2.0, 3.0, 4.0];
        let keyframes = vec![
            Vec3::ONE * 0.0,
            Vec3::ONE * 3.0,
            Vec3::ONE * 6.0,
            Vec3::ONE * 9.0,
        ];
        let interpolation = crate::Interpolation::Linear;

        let variable_curve = VariableCurve {
            keyframe_timestamps,
            keyframes: crate::Keyframes::Translation(keyframes),
            interpolation,
        };

        assert!(variable_curve.keyframe_timestamps.len() == variable_curve.keyframes.len());

        // f32 doesn't impl Ord so we can't easily sort it
        let mut maybe_last_timestamp = None;
        for current_timestamp in &variable_curve.keyframe_timestamps {
            assert!(current_timestamp.is_finite());

            if let Some(last_timestamp) = maybe_last_timestamp {
                assert!(current_timestamp > last_timestamp);
            }
            maybe_last_timestamp = Some(current_timestamp);
        }

        variable_curve
    }

    #[test]
    fn find_current_keyframe_is_in_bounds() {
        let curve = test_variable_curve();
        let min_time = *curve.keyframe_timestamps.first().unwrap();
        // We will always get none at times at or past the second last keyframe
        let second_last_keyframe = curve.keyframe_timestamps.len() - 2;
        let max_time = curve.keyframe_timestamps[second_last_keyframe];
        let elapsed_time = max_time - min_time;

        let n_keyframes = curve.keyframe_timestamps.len();
        let n_test_points = 5;

        for i in 0..=n_test_points {
            // Get a value between 0 and 1
            let normalized_time = i as f32 / n_test_points as f32;
            let seek_time = min_time + normalized_time * elapsed_time;
            assert!(seek_time >= min_time);
            assert!(seek_time <= max_time);

            let maybe_current_keyframe = curve.find_current_keyframe(seek_time);
            assert!(
                maybe_current_keyframe.is_some(),
                "Seek time: {seek_time}, Min time: {min_time}, Max time: {max_time}"
            );

            // We cannot return the last keyframe,
            // because we want to interpolate between the current and next keyframe
            assert!(maybe_current_keyframe.unwrap() < n_keyframes);
        }
    }

    #[test]
    fn find_current_keyframe_returns_none_on_unstarted_animations() {
        let curve = test_variable_curve();
        let min_time = *curve.keyframe_timestamps.first().unwrap();
        let seek_time = 0.0;
        assert!(seek_time < min_time);

        let maybe_keyframe = curve.find_current_keyframe(seek_time);
        assert!(
            maybe_keyframe.is_none(),
            "Seek time: {seek_time}, Minimum time: {min_time}"
        );
    }

    #[test]
    fn find_current_keyframe_returns_none_on_finished_animation() {
        let curve = test_variable_curve();
        let max_time = *curve.keyframe_timestamps.last().unwrap();

        assert!(max_time < f32::INFINITY);
        let maybe_keyframe = curve.find_current_keyframe(f32::INFINITY);
        assert!(maybe_keyframe.is_none());

        let maybe_keyframe = curve.find_current_keyframe(max_time);
        assert!(maybe_keyframe.is_none());
    }

    #[test]
    fn second_last_keyframe_is_found_correctly() {
        let curve = test_variable_curve();

        // Exact time match
        let second_last_keyframe = curve.keyframe_timestamps.len() - 2;
        let second_last_time = curve.keyframe_timestamps[second_last_keyframe];
        let maybe_keyframe = curve.find_current_keyframe(second_last_time);
        assert!(maybe_keyframe.unwrap() == second_last_keyframe);

        // Inexact match, between the last and second last frames
        let seek_time = second_last_time + 0.001;
        let last_time = curve.keyframe_timestamps[second_last_keyframe + 1];
        assert!(seek_time < last_time);

        let maybe_keyframe = curve.find_current_keyframe(seek_time);
        assert!(maybe_keyframe.unwrap() == second_last_keyframe);
    }

    #[test]
    fn exact_keyframe_matches_are_found_correctly() {
        let curve = test_variable_curve();
        let second_last_keyframe = curve.keyframes.len() - 2;

        for i in 0..=second_last_keyframe {
            let seek_time = curve.keyframe_timestamps[i];

            let keyframe = curve.find_current_keyframe(seek_time).unwrap();
            assert!(keyframe == i);
        }
    }

    #[test]
    fn exact_and_inexact_keyframes_correspond() {
        let curve = test_variable_curve();

        let second_last_keyframe = curve.keyframes.len() - 2;

        for i in 0..=second_last_keyframe {
            let seek_time = curve.keyframe_timestamps[i];

            let exact_keyframe = curve.find_current_keyframe(seek_time).unwrap();

            let inexact_seek_time = seek_time + 0.0001;
            let final_time = *curve.keyframe_timestamps.last().unwrap();
            assert!(inexact_seek_time < final_time);

            let inexact_keyframe = curve.find_current_keyframe(inexact_seek_time).unwrap();

            assert!(exact_keyframe == inexact_keyframe);
        }
    }
}