1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
//! Assigning objects to clusters.

use bevy_ecs::{
    entity::Entity,
    system::{Commands, Local, Query, Res, ResMut},
};
use bevy_math::{Mat4, UVec3, Vec2, Vec3, Vec3A, Vec3Swizzles as _, Vec4, Vec4Swizzles as _};
use bevy_render::{
    camera::Camera,
    primitives::{Aabb, Frustum, HalfSpace, Sphere},
    render_resource::BufferBindingType,
    renderer::RenderDevice,
    view::{RenderLayers, ViewVisibility},
};
use bevy_transform::components::GlobalTransform;
use bevy_utils::tracing::warn;

use crate::{
    ClusterConfig, ClusterFarZMode, Clusters, GlobalVisibleClusterableObjects, PointLight,
    SpotLight, ViewClusterBindings, VisibleClusterableObjects,
    CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT, MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS,
};

const NDC_MIN: Vec2 = Vec2::NEG_ONE;
const NDC_MAX: Vec2 = Vec2::ONE;

const VEC2_HALF: Vec2 = Vec2::splat(0.5);
const VEC2_HALF_NEGATIVE_Y: Vec2 = Vec2::new(0.5, -0.5);

#[derive(Clone)]
// data required for assigning objects to clusters
pub(crate) struct ClusterableObjectAssignmentData {
    entity: Entity,
    transform: GlobalTransform,
    range: f32,
    shadows_enabled: bool,
    spot_light_angle: Option<f32>,
    render_layers: RenderLayers,
}

impl ClusterableObjectAssignmentData {
    pub fn sphere(&self) -> Sphere {
        Sphere {
            center: self.transform.translation_vec3a(),
            radius: self.range,
        }
    }
}

// NOTE: Run this before update_point_light_frusta!
#[allow(clippy::too_many_arguments)]
pub(crate) fn assign_objects_to_clusters(
    mut commands: Commands,
    mut global_clusterable_objects: ResMut<GlobalVisibleClusterableObjects>,
    mut views: Query<(
        Entity,
        &GlobalTransform,
        &Camera,
        &Frustum,
        &ClusterConfig,
        &mut Clusters,
        Option<&RenderLayers>,
        Option<&mut VisibleClusterableObjects>,
    )>,
    point_lights_query: Query<(
        Entity,
        &GlobalTransform,
        &PointLight,
        Option<&RenderLayers>,
        &ViewVisibility,
    )>,
    spot_lights_query: Query<(
        Entity,
        &GlobalTransform,
        &SpotLight,
        Option<&RenderLayers>,
        &ViewVisibility,
    )>,
    mut clusterable_objects: Local<Vec<ClusterableObjectAssignmentData>>,
    mut cluster_aabb_spheres: Local<Vec<Option<Sphere>>>,
    mut max_clusterable_objects_warning_emitted: Local<bool>,
    render_device: Option<Res<RenderDevice>>,
) {
    let Some(render_device) = render_device else {
        return;
    };

    global_clusterable_objects.entities.clear();
    clusterable_objects.clear();
    // collect just the relevant query data into a persisted vec to avoid reallocating each frame
    clusterable_objects.extend(
        point_lights_query
            .iter()
            .filter(|(.., visibility)| visibility.get())
            .map(
                |(entity, transform, point_light, maybe_layers, _visibility)| {
                    ClusterableObjectAssignmentData {
                        entity,
                        transform: GlobalTransform::from_translation(transform.translation()),
                        shadows_enabled: point_light.shadows_enabled,
                        range: point_light.range,
                        spot_light_angle: None,
                        render_layers: maybe_layers.unwrap_or_default().clone(),
                    }
                },
            ),
    );
    clusterable_objects.extend(
        spot_lights_query
            .iter()
            .filter(|(.., visibility)| visibility.get())
            .map(
                |(entity, transform, spot_light, maybe_layers, _visibility)| {
                    ClusterableObjectAssignmentData {
                        entity,
                        transform: *transform,
                        shadows_enabled: spot_light.shadows_enabled,
                        range: spot_light.range,
                        spot_light_angle: Some(spot_light.outer_angle),
                        render_layers: maybe_layers.unwrap_or_default().clone(),
                    }
                },
            ),
    );

    let clustered_forward_buffer_binding_type =
        render_device.get_supported_read_only_binding_type(CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT);
    let supports_storage_buffers = matches!(
        clustered_forward_buffer_binding_type,
        BufferBindingType::Storage { .. }
    );
    if clusterable_objects.len() > MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS
        && !supports_storage_buffers
    {
        clusterable_objects.sort_by(|clusterable_object_1, clusterable_object_2| {
            crate::clusterable_object_order(
                (
                    &clusterable_object_1.entity,
                    &clusterable_object_1.shadows_enabled,
                    &clusterable_object_1.spot_light_angle.is_some(),
                ),
                (
                    &clusterable_object_2.entity,
                    &clusterable_object_2.shadows_enabled,
                    &clusterable_object_2.spot_light_angle.is_some(),
                ),
            )
        });

        // check each clusterable object against each view's frustum, keep only
        // those that affect at least one of our views
        let frusta: Vec<_> = views
            .iter()
            .map(|(_, _, _, frustum, _, _, _, _)| *frustum)
            .collect();
        let mut clusterable_objects_in_view_count = 0;
        clusterable_objects.retain(|clusterable_object| {
            // take one extra clusterable object to check if we should emit the warning
            if clusterable_objects_in_view_count == MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS + 1 {
                false
            } else {
                let clusterable_object_sphere = clusterable_object.sphere();
                let clusterable_object_in_view = frusta
                    .iter()
                    .any(|frustum| frustum.intersects_sphere(&clusterable_object_sphere, true));

                if clusterable_object_in_view {
                    clusterable_objects_in_view_count += 1;
                }

                clusterable_object_in_view
            }
        });

        if clusterable_objects.len() > MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS
            && !*max_clusterable_objects_warning_emitted
        {
            warn!(
                "MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS ({}) exceeded",
                MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS
            );
            *max_clusterable_objects_warning_emitted = true;
        }

        clusterable_objects.truncate(MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS);
    }

    for (
        view_entity,
        camera_transform,
        camera,
        frustum,
        config,
        clusters,
        maybe_layers,
        mut visible_clusterable_objects,
    ) in &mut views
    {
        let view_layers = maybe_layers.unwrap_or_default();
        let clusters = clusters.into_inner();

        if matches!(config, ClusterConfig::None) {
            if visible_clusterable_objects.is_some() {
                commands
                    .entity(view_entity)
                    .remove::<VisibleClusterableObjects>();
            }
            clusters.clear();
            continue;
        }

        let Some(screen_size) = camera.physical_viewport_size() else {
            clusters.clear();
            continue;
        };

        let mut requested_cluster_dimensions = config.dimensions_for_screen_size(screen_size);

        let world_from_view = camera_transform.compute_matrix();
        let view_from_world_scale = camera_transform.compute_transform().scale.recip();
        let view_from_world_scale_max = view_from_world_scale.abs().max_element();
        let view_from_world = world_from_view.inverse();
        let is_orthographic = camera.clip_from_view().w_axis.w == 1.0;

        let far_z = match config.far_z_mode() {
            ClusterFarZMode::MaxClusterableObjectRange => {
                let view_from_world_row_2 = view_from_world.row(2);
                clusterable_objects
                    .iter()
                    .map(|object| {
                        -view_from_world_row_2.dot(object.transform.translation().extend(1.0))
                            + object.range * view_from_world_scale.z
                    })
                    .reduce(f32::max)
                    .unwrap_or(0.0)
            }
            ClusterFarZMode::Constant(far) => far,
        };
        let first_slice_depth = match (is_orthographic, requested_cluster_dimensions.z) {
            (true, _) => {
                // NOTE: Based on glam's Mat4::orthographic_rh(), as used to calculate the orthographic projection
                // matrix, we can calculate the projection's view-space near plane as follows:
                // component 3,2 = r * near and 2,2 = r where r = 1.0 / (near - far)
                // There is a caveat here that when calculating the projection matrix, near and far were swapped to give
                // reversed z, consistent with the perspective projection. So,
                // 3,2 = r * far and 2,2 = r where r = 1.0 / (far - near)
                // rearranging r = 1.0 / (far - near), r * (far - near) = 1.0, r * far - 1.0 = r * near, near = (r * far - 1.0) / r
                // = (3,2 - 1.0) / 2,2
                (camera.clip_from_view().w_axis.z - 1.0) / camera.clip_from_view().z_axis.z
            }
            (false, 1) => config.first_slice_depth().max(far_z),
            _ => config.first_slice_depth(),
        };
        let first_slice_depth = first_slice_depth * view_from_world_scale.z;

        // NOTE: Ensure the far_z is at least as far as the first_depth_slice to avoid clustering problems.
        let far_z = far_z.max(first_slice_depth);
        let cluster_factors = crate::calculate_cluster_factors(
            first_slice_depth,
            far_z,
            requested_cluster_dimensions.z as f32,
            is_orthographic,
        );

        if config.dynamic_resizing() {
            let mut cluster_index_estimate = 0.0;
            for clusterable_object in &clusterable_objects {
                let clusterable_object_sphere = clusterable_object.sphere();

                // Check if the clusterable object is within the view frustum
                if !frustum.intersects_sphere(&clusterable_object_sphere, true) {
                    continue;
                }

                // calculate a conservative aabb estimate of number of clusters affected by this light
                // this overestimates index counts by at most 50% (and typically much less) when the whole light range is in view
                // it can overestimate more significantly when light ranges are only partially in view
                let (clusterable_object_aabb_min, clusterable_object_aabb_max) =
                    cluster_space_clusterable_object_aabb(
                        view_from_world,
                        view_from_world_scale,
                        camera.clip_from_view(),
                        &clusterable_object_sphere,
                    );

                // since we won't adjust z slices we can calculate exact number of slices required in z dimension
                let z_cluster_min = view_z_to_z_slice(
                    cluster_factors,
                    requested_cluster_dimensions.z,
                    clusterable_object_aabb_min.z,
                    is_orthographic,
                );
                let z_cluster_max = view_z_to_z_slice(
                    cluster_factors,
                    requested_cluster_dimensions.z,
                    clusterable_object_aabb_max.z,
                    is_orthographic,
                );
                let z_count =
                    z_cluster_min.max(z_cluster_max) - z_cluster_min.min(z_cluster_max) + 1;

                // calculate x/y count using floats to avoid overestimating counts due to large initial tile sizes
                let xy_min = clusterable_object_aabb_min.xy();
                let xy_max = clusterable_object_aabb_max.xy();
                // multiply by 0.5 to move from [-1,1] to [-0.5, 0.5], max extent of 1 in each dimension
                let xy_count = (xy_max - xy_min)
                    * 0.5
                    * Vec2::new(
                        requested_cluster_dimensions.x as f32,
                        requested_cluster_dimensions.y as f32,
                    );

                // add up to 2 to each axis to account for overlap
                let x_overlap = if xy_min.x <= -1.0 { 0.0 } else { 1.0 }
                    + if xy_max.x >= 1.0 { 0.0 } else { 1.0 };
                let y_overlap = if xy_min.y <= -1.0 { 0.0 } else { 1.0 }
                    + if xy_max.y >= 1.0 { 0.0 } else { 1.0 };
                cluster_index_estimate +=
                    (xy_count.x + x_overlap) * (xy_count.y + y_overlap) * z_count as f32;
            }

            if cluster_index_estimate > ViewClusterBindings::MAX_INDICES as f32 {
                // scale x and y cluster count to be able to fit all our indices

                // we take the ratio of the actual indices over the index estimate.
                // this is not guaranteed to be small enough due to overlapped tiles, but
                // the conservative estimate is more than sufficient to cover the
                // difference
                let index_ratio = ViewClusterBindings::MAX_INDICES as f32 / cluster_index_estimate;
                let xy_ratio = index_ratio.sqrt();

                requested_cluster_dimensions.x =
                    ((requested_cluster_dimensions.x as f32 * xy_ratio).floor() as u32).max(1);
                requested_cluster_dimensions.y =
                    ((requested_cluster_dimensions.y as f32 * xy_ratio).floor() as u32).max(1);
            }
        }

        clusters.update(screen_size, requested_cluster_dimensions);
        clusters.near = first_slice_depth;
        clusters.far = far_z;

        // NOTE: Maximum 4096 clusters due to uniform buffer size constraints
        debug_assert!(
            clusters.dimensions.x * clusters.dimensions.y * clusters.dimensions.z <= 4096
        );

        let view_from_clip = camera.clip_from_view().inverse();

        for clusterable_objects in &mut clusters.clusterable_objects {
            clusterable_objects.entities.clear();
            clusterable_objects.point_light_count = 0;
            clusterable_objects.spot_light_count = 0;
        }
        let cluster_count =
            (clusters.dimensions.x * clusters.dimensions.y * clusters.dimensions.z) as usize;
        clusters
            .clusterable_objects
            .resize_with(cluster_count, VisibleClusterableObjects::default);

        // initialize empty cluster bounding spheres
        cluster_aabb_spheres.clear();
        cluster_aabb_spheres.extend(std::iter::repeat(None).take(cluster_count));

        // Calculate the x/y/z cluster frustum planes in view space
        let mut x_planes = Vec::with_capacity(clusters.dimensions.x as usize + 1);
        let mut y_planes = Vec::with_capacity(clusters.dimensions.y as usize + 1);
        let mut z_planes = Vec::with_capacity(clusters.dimensions.z as usize + 1);

        if is_orthographic {
            let x_slices = clusters.dimensions.x as f32;
            for x in 0..=clusters.dimensions.x {
                let x_proportion = x as f32 / x_slices;
                let x_pos = x_proportion * 2.0 - 1.0;
                let view_x = clip_to_view(view_from_clip, Vec4::new(x_pos, 0.0, 1.0, 1.0)).x;
                let normal = Vec3::X;
                let d = view_x * normal.x;
                x_planes.push(HalfSpace::new(normal.extend(d)));
            }

            let y_slices = clusters.dimensions.y as f32;
            for y in 0..=clusters.dimensions.y {
                let y_proportion = 1.0 - y as f32 / y_slices;
                let y_pos = y_proportion * 2.0 - 1.0;
                let view_y = clip_to_view(view_from_clip, Vec4::new(0.0, y_pos, 1.0, 1.0)).y;
                let normal = Vec3::Y;
                let d = view_y * normal.y;
                y_planes.push(HalfSpace::new(normal.extend(d)));
            }
        } else {
            let x_slices = clusters.dimensions.x as f32;
            for x in 0..=clusters.dimensions.x {
                let x_proportion = x as f32 / x_slices;
                let x_pos = x_proportion * 2.0 - 1.0;
                let nb = clip_to_view(view_from_clip, Vec4::new(x_pos, -1.0, 1.0, 1.0)).xyz();
                let nt = clip_to_view(view_from_clip, Vec4::new(x_pos, 1.0, 1.0, 1.0)).xyz();
                let normal = nb.cross(nt);
                let d = nb.dot(normal);
                x_planes.push(HalfSpace::new(normal.extend(d)));
            }

            let y_slices = clusters.dimensions.y as f32;
            for y in 0..=clusters.dimensions.y {
                let y_proportion = 1.0 - y as f32 / y_slices;
                let y_pos = y_proportion * 2.0 - 1.0;
                let nl = clip_to_view(view_from_clip, Vec4::new(-1.0, y_pos, 1.0, 1.0)).xyz();
                let nr = clip_to_view(view_from_clip, Vec4::new(1.0, y_pos, 1.0, 1.0)).xyz();
                let normal = nr.cross(nl);
                let d = nr.dot(normal);
                y_planes.push(HalfSpace::new(normal.extend(d)));
            }
        }

        let z_slices = clusters.dimensions.z;
        for z in 0..=z_slices {
            let view_z = z_slice_to_view_z(first_slice_depth, far_z, z_slices, z, is_orthographic);
            let normal = -Vec3::Z;
            let d = view_z * normal.z;
            z_planes.push(HalfSpace::new(normal.extend(d)));
        }

        let mut update_from_object_intersections = |visible_clusterable_objects: &mut Vec<
            Entity,
        >| {
            for clusterable_object in &clusterable_objects {
                // check if the clusterable light layers overlap the view layers
                if !view_layers.intersects(&clusterable_object.render_layers) {
                    continue;
                }

                let clusterable_object_sphere = clusterable_object.sphere();

                // Check if the clusterable object is within the view frustum
                if !frustum.intersects_sphere(&clusterable_object_sphere, true) {
                    continue;
                }

                // NOTE: The clusterable object intersects the frustum so it
                // must be visible and part of the global set
                global_clusterable_objects
                    .entities
                    .insert(clusterable_object.entity);
                visible_clusterable_objects.push(clusterable_object.entity);

                // note: caching seems to be slower than calling twice for this aabb calculation
                let (
                    clusterable_object_aabb_xy_ndc_z_view_min,
                    clusterable_object_aabb_xy_ndc_z_view_max,
                ) = cluster_space_clusterable_object_aabb(
                    view_from_world,
                    view_from_world_scale,
                    camera.clip_from_view(),
                    &clusterable_object_sphere,
                );

                let min_cluster = ndc_position_to_cluster(
                    clusters.dimensions,
                    cluster_factors,
                    is_orthographic,
                    clusterable_object_aabb_xy_ndc_z_view_min,
                    clusterable_object_aabb_xy_ndc_z_view_min.z,
                );
                let max_cluster = ndc_position_to_cluster(
                    clusters.dimensions,
                    cluster_factors,
                    is_orthographic,
                    clusterable_object_aabb_xy_ndc_z_view_max,
                    clusterable_object_aabb_xy_ndc_z_view_max.z,
                );
                let (min_cluster, max_cluster) =
                    (min_cluster.min(max_cluster), min_cluster.max(max_cluster));

                // What follows is the Iterative Sphere Refinement algorithm from Just Cause 3
                // Persson et al, Practical Clustered Shading
                // http://newq.net/dl/pub/s2015_practical.pdf
                // NOTE: A sphere under perspective projection is no longer a sphere. It gets
                // stretched and warped, which prevents simpler algorithms from being correct
                // as they often assume that the widest part of the sphere under projection is the
                // center point on the axis of interest plus the radius, and that is not true!
                let view_clusterable_object_sphere = Sphere {
                    center: Vec3A::from(
                        view_from_world * clusterable_object_sphere.center.extend(1.0),
                    ),
                    radius: clusterable_object_sphere.radius * view_from_world_scale_max,
                };
                let spot_light_dir_sin_cos = clusterable_object.spot_light_angle.map(|angle| {
                    let (angle_sin, angle_cos) = angle.sin_cos();
                    (
                        (view_from_world * clusterable_object.transform.back().extend(0.0))
                            .truncate()
                            .normalize(),
                        angle_sin,
                        angle_cos,
                    )
                });
                let clusterable_object_center_clip =
                    camera.clip_from_view() * view_clusterable_object_sphere.center.extend(1.0);
                let object_center_ndc =
                    clusterable_object_center_clip.xyz() / clusterable_object_center_clip.w;
                let cluster_coordinates = ndc_position_to_cluster(
                    clusters.dimensions,
                    cluster_factors,
                    is_orthographic,
                    object_center_ndc,
                    view_clusterable_object_sphere.center.z,
                );
                let z_center = if object_center_ndc.z <= 1.0 {
                    Some(cluster_coordinates.z)
                } else {
                    None
                };
                let y_center = if object_center_ndc.y > 1.0 {
                    None
                } else if object_center_ndc.y < -1.0 {
                    Some(clusters.dimensions.y + 1)
                } else {
                    Some(cluster_coordinates.y)
                };
                for z in min_cluster.z..=max_cluster.z {
                    let mut z_object = view_clusterable_object_sphere.clone();
                    if z_center.is_none() || z != z_center.unwrap() {
                        // The z plane closer to the clusterable object has the
                        // larger radius circle where the light sphere
                        // intersects the z plane.
                        let z_plane = if z_center.is_some() && z < z_center.unwrap() {
                            z_planes[(z + 1) as usize]
                        } else {
                            z_planes[z as usize]
                        };
                        // Project the sphere to this z plane and use its radius as the radius of a
                        // new, refined sphere.
                        if let Some(projected) = project_to_plane_z(z_object, z_plane) {
                            z_object = projected;
                        } else {
                            continue;
                        }
                    }
                    for y in min_cluster.y..=max_cluster.y {
                        let mut y_object = z_object.clone();
                        if y_center.is_none() || y != y_center.unwrap() {
                            // The y plane closer to the clusterable object has
                            // the larger radius circle where the light sphere
                            // intersects the y plane.
                            let y_plane = if y_center.is_some() && y < y_center.unwrap() {
                                y_planes[(y + 1) as usize]
                            } else {
                                y_planes[y as usize]
                            };
                            // Project the refined sphere to this y plane and use its radius as the
                            // radius of a new, even more refined sphere.
                            if let Some(projected) =
                                project_to_plane_y(y_object, y_plane, is_orthographic)
                            {
                                y_object = projected;
                            } else {
                                continue;
                            }
                        }
                        // Loop from the left to find the first affected cluster
                        let mut min_x = min_cluster.x;
                        loop {
                            if min_x >= max_cluster.x
                                || -get_distance_x(
                                    x_planes[(min_x + 1) as usize],
                                    y_object.center,
                                    is_orthographic,
                                ) + y_object.radius
                                    > 0.0
                            {
                                break;
                            }
                            min_x += 1;
                        }
                        // Loop from the right to find the last affected cluster
                        let mut max_x = max_cluster.x;
                        loop {
                            if max_x <= min_x
                                || get_distance_x(
                                    x_planes[max_x as usize],
                                    y_object.center,
                                    is_orthographic,
                                ) + y_object.radius
                                    > 0.0
                            {
                                break;
                            }
                            max_x -= 1;
                        }
                        let mut cluster_index = ((y * clusters.dimensions.x + min_x)
                            * clusters.dimensions.z
                            + z) as usize;

                        if let Some((view_light_direction, angle_sin, angle_cos)) =
                            spot_light_dir_sin_cos
                        {
                            for x in min_x..=max_x {
                                // further culling for spot lights
                                // get or initialize cluster bounding sphere
                                let cluster_aabb_sphere = &mut cluster_aabb_spheres[cluster_index];
                                let cluster_aabb_sphere = if let Some(sphere) = cluster_aabb_sphere
                                {
                                    &*sphere
                                } else {
                                    let aabb = compute_aabb_for_cluster(
                                        first_slice_depth,
                                        far_z,
                                        clusters.tile_size.as_vec2(),
                                        screen_size.as_vec2(),
                                        view_from_clip,
                                        is_orthographic,
                                        clusters.dimensions,
                                        UVec3::new(x, y, z),
                                    );
                                    let sphere = Sphere {
                                        center: aabb.center,
                                        radius: aabb.half_extents.length(),
                                    };
                                    *cluster_aabb_sphere = Some(sphere);
                                    cluster_aabb_sphere.as_ref().unwrap()
                                };

                                // test -- based on https://bartwronski.com/2017/04/13/cull-that-cone/
                                let spot_light_offset = Vec3::from(
                                    view_clusterable_object_sphere.center
                                        - cluster_aabb_sphere.center,
                                );
                                let spot_light_dist_sq = spot_light_offset.length_squared();
                                let v1_len = spot_light_offset.dot(view_light_direction);

                                let distance_closest_point = (angle_cos
                                    * (spot_light_dist_sq - v1_len * v1_len).sqrt())
                                    - v1_len * angle_sin;
                                let angle_cull =
                                    distance_closest_point > cluster_aabb_sphere.radius;

                                let front_cull = v1_len
                                    > cluster_aabb_sphere.radius
                                        + clusterable_object.range * view_from_world_scale_max;
                                let back_cull = v1_len < -cluster_aabb_sphere.radius;

                                if !angle_cull && !front_cull && !back_cull {
                                    // this cluster is affected by the spot light
                                    clusters.clusterable_objects[cluster_index]
                                        .entities
                                        .push(clusterable_object.entity);
                                    clusters.clusterable_objects[cluster_index].spot_light_count +=
                                        1;
                                }
                                cluster_index += clusters.dimensions.z as usize;
                            }
                        } else {
                            for _ in min_x..=max_x {
                                // all clusters within range are affected by point lights
                                clusters.clusterable_objects[cluster_index]
                                    .entities
                                    .push(clusterable_object.entity);
                                clusters.clusterable_objects[cluster_index].point_light_count += 1;
                                cluster_index += clusters.dimensions.z as usize;
                            }
                        }
                    }
                }
            }
        };

        // reuse existing visible clusterable objects Vec, if it exists
        if let Some(visible_clusterable_objects) = visible_clusterable_objects.as_mut() {
            visible_clusterable_objects.entities.clear();
            update_from_object_intersections(&mut visible_clusterable_objects.entities);
        } else {
            let mut entities = Vec::new();
            update_from_object_intersections(&mut entities);
            commands
                .entity(view_entity)
                .insert(VisibleClusterableObjects {
                    entities,
                    ..Default::default()
                });
        }
    }
}

#[allow(clippy::too_many_arguments)]
fn compute_aabb_for_cluster(
    z_near: f32,
    z_far: f32,
    tile_size: Vec2,
    screen_size: Vec2,
    view_from_clip: Mat4,
    is_orthographic: bool,
    cluster_dimensions: UVec3,
    ijk: UVec3,
) -> Aabb {
    let ijk = ijk.as_vec3();

    // Calculate the minimum and maximum points in screen space
    let p_min = ijk.xy() * tile_size;
    let p_max = p_min + tile_size;

    let cluster_min;
    let cluster_max;
    if is_orthographic {
        // Use linear depth slicing for orthographic

        // Convert to view space at the cluster near and far planes
        // NOTE: 1.0 is the near plane due to using reverse z projections
        let mut p_min = screen_to_view(screen_size, view_from_clip, p_min, 0.0).xyz();
        let mut p_max = screen_to_view(screen_size, view_from_clip, p_max, 0.0).xyz();

        // calculate cluster depth using z_near and z_far
        p_min.z = -z_near + (z_near - z_far) * ijk.z / cluster_dimensions.z as f32;
        p_max.z = -z_near + (z_near - z_far) * (ijk.z + 1.0) / cluster_dimensions.z as f32;

        cluster_min = p_min.min(p_max);
        cluster_max = p_min.max(p_max);
    } else {
        // Convert to view space at the near plane
        // NOTE: 1.0 is the near plane due to using reverse z projections
        let p_min = screen_to_view(screen_size, view_from_clip, p_min, 1.0);
        let p_max = screen_to_view(screen_size, view_from_clip, p_max, 1.0);

        let z_far_over_z_near = -z_far / -z_near;
        let cluster_near = if ijk.z == 0.0 {
            0.0
        } else {
            -z_near * z_far_over_z_near.powf((ijk.z - 1.0) / (cluster_dimensions.z - 1) as f32)
        };
        // NOTE: This could be simplified to:
        // cluster_far = cluster_near * z_far_over_z_near;
        let cluster_far = if cluster_dimensions.z == 1 {
            -z_far
        } else {
            -z_near * z_far_over_z_near.powf(ijk.z / (cluster_dimensions.z - 1) as f32)
        };

        // Calculate the four intersection points of the min and max points with the cluster near and far planes
        let p_min_near = line_intersection_to_z_plane(Vec3::ZERO, p_min.xyz(), cluster_near);
        let p_min_far = line_intersection_to_z_plane(Vec3::ZERO, p_min.xyz(), cluster_far);
        let p_max_near = line_intersection_to_z_plane(Vec3::ZERO, p_max.xyz(), cluster_near);
        let p_max_far = line_intersection_to_z_plane(Vec3::ZERO, p_max.xyz(), cluster_far);

        cluster_min = p_min_near.min(p_min_far).min(p_max_near.min(p_max_far));
        cluster_max = p_min_near.max(p_min_far).max(p_max_near.max(p_max_far));
    }

    Aabb::from_min_max(cluster_min, cluster_max)
}

// NOTE: Keep in sync as the inverse of view_z_to_z_slice above
fn z_slice_to_view_z(
    near: f32,
    far: f32,
    z_slices: u32,
    z_slice: u32,
    is_orthographic: bool,
) -> f32 {
    if is_orthographic {
        return -near - (far - near) * z_slice as f32 / z_slices as f32;
    }

    // Perspective
    if z_slice == 0 {
        0.0
    } else {
        -near * (far / near).powf((z_slice - 1) as f32 / (z_slices - 1) as f32)
    }
}

fn ndc_position_to_cluster(
    cluster_dimensions: UVec3,
    cluster_factors: Vec2,
    is_orthographic: bool,
    ndc_p: Vec3,
    view_z: f32,
) -> UVec3 {
    let cluster_dimensions_f32 = cluster_dimensions.as_vec3();
    let frag_coord = (ndc_p.xy() * VEC2_HALF_NEGATIVE_Y + VEC2_HALF).clamp(Vec2::ZERO, Vec2::ONE);
    let xy = (frag_coord * cluster_dimensions_f32.xy()).floor();
    let z_slice = view_z_to_z_slice(
        cluster_factors,
        cluster_dimensions.z,
        view_z,
        is_orthographic,
    );
    xy.as_uvec2()
        .extend(z_slice)
        .clamp(UVec3::ZERO, cluster_dimensions - UVec3::ONE)
}

/// Calculate bounds for the clusterable object using a view space aabb.
/// Returns a `(Vec3, Vec3)` containing minimum and maximum with
///     `X` and `Y` in normalized device coordinates with range `[-1, 1]`
///     `Z` in view space, with range `[-inf, -f32::MIN_POSITIVE]`
fn cluster_space_clusterable_object_aabb(
    view_from_world: Mat4,
    view_from_world_scale: Vec3,
    clip_from_view: Mat4,
    clusterable_object_sphere: &Sphere,
) -> (Vec3, Vec3) {
    let clusterable_object_aabb_view = Aabb {
        center: Vec3A::from(view_from_world * clusterable_object_sphere.center.extend(1.0)),
        half_extents: Vec3A::from(clusterable_object_sphere.radius * view_from_world_scale.abs()),
    };
    let (mut clusterable_object_aabb_view_min, mut clusterable_object_aabb_view_max) = (
        clusterable_object_aabb_view.min(),
        clusterable_object_aabb_view.max(),
    );

    // Constrain view z to be negative - i.e. in front of the camera
    // When view z is >= 0.0 and we're using a perspective projection, bad things happen.
    // At view z == 0.0, ndc x,y are mathematically undefined. At view z > 0.0, i.e. behind the camera,
    // the perspective projection flips the directions of the axes. This breaks assumptions about
    // use of min/max operations as something that was to the left in view space is now returning a
    // coordinate that for view z in front of the camera would be on the right, but at view z behind the
    // camera is on the left. So, we just constrain view z to be < 0.0 and necessarily in front of the camera.
    clusterable_object_aabb_view_min.z = clusterable_object_aabb_view_min.z.min(-f32::MIN_POSITIVE);
    clusterable_object_aabb_view_max.z = clusterable_object_aabb_view_max.z.min(-f32::MIN_POSITIVE);

    // Is there a cheaper way to do this? The problem is that because of perspective
    // the point at max z but min xy may be less xy in screenspace, and similar. As
    // such, projecting the min and max xy at both the closer and further z and taking
    // the min and max of those projected points addresses this.
    let (
        clusterable_object_aabb_view_xymin_near,
        clusterable_object_aabb_view_xymin_far,
        clusterable_object_aabb_view_xymax_near,
        clusterable_object_aabb_view_xymax_far,
    ) = (
        clusterable_object_aabb_view_min,
        clusterable_object_aabb_view_min
            .xy()
            .extend(clusterable_object_aabb_view_max.z),
        clusterable_object_aabb_view_max
            .xy()
            .extend(clusterable_object_aabb_view_min.z),
        clusterable_object_aabb_view_max,
    );
    let (
        clusterable_object_aabb_clip_xymin_near,
        clusterable_object_aabb_clip_xymin_far,
        clusterable_object_aabb_clip_xymax_near,
        clusterable_object_aabb_clip_xymax_far,
    ) = (
        clip_from_view * clusterable_object_aabb_view_xymin_near.extend(1.0),
        clip_from_view * clusterable_object_aabb_view_xymin_far.extend(1.0),
        clip_from_view * clusterable_object_aabb_view_xymax_near.extend(1.0),
        clip_from_view * clusterable_object_aabb_view_xymax_far.extend(1.0),
    );
    let (
        clusterable_object_aabb_ndc_xymin_near,
        clusterable_object_aabb_ndc_xymin_far,
        clusterable_object_aabb_ndc_xymax_near,
        clusterable_object_aabb_ndc_xymax_far,
    ) = (
        clusterable_object_aabb_clip_xymin_near.xyz() / clusterable_object_aabb_clip_xymin_near.w,
        clusterable_object_aabb_clip_xymin_far.xyz() / clusterable_object_aabb_clip_xymin_far.w,
        clusterable_object_aabb_clip_xymax_near.xyz() / clusterable_object_aabb_clip_xymax_near.w,
        clusterable_object_aabb_clip_xymax_far.xyz() / clusterable_object_aabb_clip_xymax_far.w,
    );
    let (clusterable_object_aabb_ndc_min, clusterable_object_aabb_ndc_max) = (
        clusterable_object_aabb_ndc_xymin_near
            .min(clusterable_object_aabb_ndc_xymin_far)
            .min(clusterable_object_aabb_ndc_xymax_near)
            .min(clusterable_object_aabb_ndc_xymax_far),
        clusterable_object_aabb_ndc_xymin_near
            .max(clusterable_object_aabb_ndc_xymin_far)
            .max(clusterable_object_aabb_ndc_xymax_near)
            .max(clusterable_object_aabb_ndc_xymax_far),
    );

    // clamp to ndc coords without depth
    let (aabb_min_ndc, aabb_max_ndc) = (
        clusterable_object_aabb_ndc_min.xy().clamp(NDC_MIN, NDC_MAX),
        clusterable_object_aabb_ndc_max.xy().clamp(NDC_MIN, NDC_MAX),
    );

    // pack unadjusted z depth into the vecs
    (
        aabb_min_ndc.extend(clusterable_object_aabb_view_min.z),
        aabb_max_ndc.extend(clusterable_object_aabb_view_max.z),
    )
}

// Calculate the intersection of a ray from the eye through the view space position to a z plane
fn line_intersection_to_z_plane(origin: Vec3, p: Vec3, z: f32) -> Vec3 {
    let v = p - origin;
    let t = (z - Vec3::Z.dot(origin)) / Vec3::Z.dot(v);
    origin + t * v
}

// NOTE: Keep in sync with bevy_pbr/src/render/pbr.wgsl
fn view_z_to_z_slice(
    cluster_factors: Vec2,
    z_slices: u32,
    view_z: f32,
    is_orthographic: bool,
) -> u32 {
    let z_slice = if is_orthographic {
        // NOTE: view_z is correct in the orthographic case
        ((view_z - cluster_factors.x) * cluster_factors.y).floor() as u32
    } else {
        // NOTE: had to use -view_z to make it positive else log(negative) is nan
        ((-view_z).ln() * cluster_factors.x - cluster_factors.y + 1.0) as u32
    };
    // NOTE: We use min as we may limit the far z plane used for clustering to be closer than
    // the furthest thing being drawn. This means that we need to limit to the maximum cluster.
    z_slice.min(z_slices - 1)
}

fn clip_to_view(view_from_clip: Mat4, clip: Vec4) -> Vec4 {
    let view = view_from_clip * clip;
    view / view.w
}

fn screen_to_view(screen_size: Vec2, view_from_clip: Mat4, screen: Vec2, ndc_z: f32) -> Vec4 {
    let tex_coord = screen / screen_size;
    let clip = Vec4::new(
        tex_coord.x * 2.0 - 1.0,
        (1.0 - tex_coord.y) * 2.0 - 1.0,
        ndc_z,
        1.0,
    );
    clip_to_view(view_from_clip, clip)
}

// NOTE: This exploits the fact that a x-plane normal has only x and z components
fn get_distance_x(plane: HalfSpace, point: Vec3A, is_orthographic: bool) -> f32 {
    if is_orthographic {
        point.x - plane.d()
    } else {
        // Distance from a point to a plane:
        // signed distance to plane = (nx * px + ny * py + nz * pz + d) / n.length()
        // NOTE: For a x-plane, ny and d are 0 and we have a unit normal
        //                          = nx * px + nz * pz
        plane.normal_d().xz().dot(point.xz())
    }
}

// NOTE: This exploits the fact that a z-plane normal has only a z component
fn project_to_plane_z(z_object: Sphere, z_plane: HalfSpace) -> Option<Sphere> {
    // p = sphere center
    // n = plane normal
    // d = n.p if p is in the plane
    // NOTE: For a z-plane, nx and ny are both 0
    // d = px * nx + py * ny + pz * nz
    //   = pz * nz
    // => pz = d / nz
    let z = z_plane.d() / z_plane.normal_d().z;
    let distance_to_plane = z - z_object.center.z;
    if distance_to_plane.abs() > z_object.radius {
        return None;
    }
    Some(Sphere {
        center: Vec3A::from(z_object.center.xy().extend(z)),
        // hypotenuse length = radius
        // pythagoras = (distance to plane)^2 + b^2 = radius^2
        radius: (z_object.radius * z_object.radius - distance_to_plane * distance_to_plane).sqrt(),
    })
}

// NOTE: This exploits the fact that a y-plane normal has only y and z components
fn project_to_plane_y(
    y_object: Sphere,
    y_plane: HalfSpace,
    is_orthographic: bool,
) -> Option<Sphere> {
    let distance_to_plane = if is_orthographic {
        y_plane.d() - y_object.center.y
    } else {
        -y_object.center.yz().dot(y_plane.normal_d().yz())
    };

    if distance_to_plane.abs() > y_object.radius {
        return None;
    }
    Some(Sphere {
        center: y_object.center + distance_to_plane * y_plane.normal(),
        radius: (y_object.radius * y_object.radius - distance_to_plane * distance_to_plane).sqrt(),
    })
}