1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
//! Spatial clustering of objects, currently just point and spot lights.

use std::num::NonZeroU64;

use bevy_ecs::{
    component::Component,
    entity::{Entity, EntityHashMap},
    query::Without,
    reflect::ReflectComponent,
    system::{Commands, Query, Res, Resource},
    world::{FromWorld, World},
};
use bevy_math::{AspectRatio, UVec2, UVec3, UVec4, Vec3Swizzles as _, Vec4};
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
use bevy_render::{
    camera::Camera,
    render_resource::{
        BindingResource, BufferBindingType, ShaderSize as _, ShaderType, StorageBuffer,
        UniformBuffer,
    },
    renderer::{RenderDevice, RenderQueue},
    Extract,
};
use bevy_utils::{hashbrown::HashSet, tracing::warn};

pub(crate) use crate::cluster::assign::assign_objects_to_clusters;
use crate::MeshPipeline;

mod assign;

#[cfg(test)]
mod test;

// NOTE: this must be kept in sync with the same constants in pbr.frag
pub const MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS: usize = 256;

// NOTE: Clustered-forward rendering requires 3 storage buffer bindings so check that
// at least that many are supported using this constant and SupportedBindingType::from_device()
pub const CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT: u32 = 3;

// this must match CLUSTER_COUNT_SIZE in pbr.wgsl
// and must be large enough to contain MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS
const CLUSTER_COUNT_SIZE: u32 = 9;

const CLUSTER_OFFSET_MASK: u32 = (1 << (32 - (CLUSTER_COUNT_SIZE * 2))) - 1;
const CLUSTER_COUNT_MASK: u32 = (1 << CLUSTER_COUNT_SIZE) - 1;

// Clustered-forward rendering notes
// The main initial reference material used was this rather accessible article:
// http://www.aortiz.me/2018/12/21/CG.html
// Some inspiration was taken from “Practical Clustered Shading” which is part 2 of:
// https://efficientshading.com/2015/01/01/real-time-many-light-management-and-shadows-with-clustered-shading/
// (Also note that Part 3 of the above shows how we could support the shadow mapping for many lights.)
// The z-slicing method mentioned in the aortiz article is originally from Tiago Sousa's Siggraph 2016 talk about Doom 2016:
// http://advances.realtimerendering.com/s2016/Siggraph2016_idTech6.pdf

/// Configure the far z-plane mode used for the furthest depth slice for clustered forward
/// rendering
#[derive(Debug, Copy, Clone, Reflect)]
pub enum ClusterFarZMode {
    /// Calculate the required maximum z-depth based on currently visible
    /// clusterable objects.  Makes better use of available clusters, speeding
    /// up GPU lighting operations at the expense of some CPU time and using
    /// more indices in the clusterable object index lists.
    MaxClusterableObjectRange,
    /// Constant max z-depth
    Constant(f32),
}

/// Configure the depth-slicing strategy for clustered forward rendering
#[derive(Debug, Copy, Clone, Reflect)]
#[reflect(Default)]
pub struct ClusterZConfig {
    /// Far `Z` plane of the first depth slice
    pub first_slice_depth: f32,
    /// Strategy for how to evaluate the far `Z` plane of the furthest depth slice
    pub far_z_mode: ClusterFarZMode,
}

/// Configuration of the clustering strategy for clustered forward rendering
#[derive(Debug, Copy, Clone, Component, Reflect)]
#[reflect(Component)]
pub enum ClusterConfig {
    /// Disable cluster calculations for this view
    None,
    /// One single cluster. Optimal for low-light complexity scenes or scenes where
    /// most lights affect the entire scene.
    Single,
    /// Explicit `X`, `Y` and `Z` counts (may yield non-square `X/Y` clusters depending on the aspect ratio)
    XYZ {
        dimensions: UVec3,
        z_config: ClusterZConfig,
        /// Specify if clusters should automatically resize in `X/Y` if there is a risk of exceeding
        /// the available cluster-object index limit
        dynamic_resizing: bool,
    },
    /// Fixed number of `Z` slices, `X` and `Y` calculated to give square clusters
    /// with at most total clusters. For top-down games where lights will generally always be within a
    /// short depth range, it may be useful to use this configuration with 1 or few `Z` slices. This
    /// would reduce the number of lights per cluster by distributing more clusters in screen space
    /// `X/Y` which matches how lights are distributed in the scene.
    FixedZ {
        total: u32,
        z_slices: u32,
        z_config: ClusterZConfig,
        /// Specify if clusters should automatically resize in `X/Y` if there is a risk of exceeding
        /// the available clusterable object index limit
        dynamic_resizing: bool,
    },
}

#[derive(Component, Debug, Default)]
pub struct Clusters {
    /// Tile size
    pub(crate) tile_size: UVec2,
    /// Number of clusters in `X` / `Y` / `Z` in the view frustum
    pub(crate) dimensions: UVec3,
    /// Distance to the far plane of the first depth slice. The first depth slice is special
    /// and explicitly-configured to avoid having unnecessarily many slices close to the camera.
    pub(crate) near: f32,
    pub(crate) far: f32,
    pub(crate) clusterable_objects: Vec<VisibleClusterableObjects>,
}

#[derive(Clone, Component, Debug, Default)]
pub struct VisibleClusterableObjects {
    pub(crate) entities: Vec<Entity>,
    pub point_light_count: usize,
    pub spot_light_count: usize,
}

#[derive(Resource, Default)]
pub struct GlobalVisibleClusterableObjects {
    pub(crate) entities: HashSet<Entity>,
}

#[derive(Resource)]
pub struct GlobalClusterableObjectMeta {
    pub gpu_clusterable_objects: GpuClusterableObjects,
    pub entity_to_index: EntityHashMap<usize>,
}

#[derive(Copy, Clone, ShaderType, Default, Debug)]
pub struct GpuClusterableObject {
    // For point lights: the lower-right 2x2 values of the projection matrix [2][2] [2][3] [3][2] [3][3]
    // For spot lights: 2 components of the direction (x,z), spot_scale and spot_offset
    pub(crate) light_custom_data: Vec4,
    pub(crate) color_inverse_square_range: Vec4,
    pub(crate) position_radius: Vec4,
    pub(crate) flags: u32,
    pub(crate) shadow_depth_bias: f32,
    pub(crate) shadow_normal_bias: f32,
    pub(crate) spot_light_tan_angle: f32,
}

pub enum GpuClusterableObjects {
    Uniform(UniformBuffer<GpuClusterableObjectsUniform>),
    Storage(StorageBuffer<GpuClusterableObjectsStorage>),
}

#[derive(ShaderType)]
pub struct GpuClusterableObjectsUniform {
    data: Box<[GpuClusterableObject; MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS]>,
}

#[derive(ShaderType, Default)]
pub struct GpuClusterableObjectsStorage {
    #[size(runtime)]
    data: Vec<GpuClusterableObject>,
}

#[derive(Component)]
pub struct ExtractedClusterConfig {
    /// Special near value for cluster calculations
    pub(crate) near: f32,
    pub(crate) far: f32,
    /// Number of clusters in `X` / `Y` / `Z` in the view frustum
    pub(crate) dimensions: UVec3,
}

enum ExtractedClusterableObjectElement {
    ClusterHeader(u32, u32),
    ClusterableObjectEntity(Entity),
}

#[derive(Component)]
pub struct ExtractedClusterableObjects {
    data: Vec<ExtractedClusterableObjectElement>,
}

#[derive(ShaderType)]
struct GpuClusterOffsetsAndCountsUniform {
    data: Box<[UVec4; ViewClusterBindings::MAX_UNIFORM_ITEMS]>,
}

#[derive(ShaderType, Default)]
struct GpuClusterableObjectIndexListsStorage {
    #[size(runtime)]
    data: Vec<u32>,
}

#[derive(ShaderType, Default)]
struct GpuClusterOffsetsAndCountsStorage {
    #[size(runtime)]
    data: Vec<UVec4>,
}

enum ViewClusterBuffers {
    Uniform {
        // NOTE: UVec4 is because all arrays in Std140 layout have 16-byte alignment
        clusterable_object_index_lists: UniformBuffer<GpuClusterableObjectIndexListsUniform>,
        // NOTE: UVec4 is because all arrays in Std140 layout have 16-byte alignment
        cluster_offsets_and_counts: UniformBuffer<GpuClusterOffsetsAndCountsUniform>,
    },
    Storage {
        clusterable_object_index_lists: StorageBuffer<GpuClusterableObjectIndexListsStorage>,
        cluster_offsets_and_counts: StorageBuffer<GpuClusterOffsetsAndCountsStorage>,
    },
}

#[derive(Component)]
pub struct ViewClusterBindings {
    n_indices: usize,
    n_offsets: usize,
    buffers: ViewClusterBuffers,
}

impl Default for ClusterZConfig {
    fn default() -> Self {
        Self {
            first_slice_depth: 5.0,
            far_z_mode: ClusterFarZMode::MaxClusterableObjectRange,
        }
    }
}

impl Default for ClusterConfig {
    fn default() -> Self {
        // 24 depth slices, square clusters with at most 4096 total clusters
        // use max light distance as clusters max `Z`-depth, first slice extends to 5.0
        Self::FixedZ {
            total: 4096,
            z_slices: 24,
            z_config: ClusterZConfig::default(),
            dynamic_resizing: true,
        }
    }
}

impl ClusterConfig {
    fn dimensions_for_screen_size(&self, screen_size: UVec2) -> UVec3 {
        match &self {
            ClusterConfig::None => UVec3::ZERO,
            ClusterConfig::Single => UVec3::ONE,
            ClusterConfig::XYZ { dimensions, .. } => *dimensions,
            ClusterConfig::FixedZ {
                total, z_slices, ..
            } => {
                let aspect_ratio: f32 =
                    AspectRatio::from_pixels(screen_size.x, screen_size.y).into();
                let mut z_slices = *z_slices;
                if *total < z_slices {
                    warn!("ClusterConfig has more z-slices than total clusters!");
                    z_slices = *total;
                }
                let per_layer = *total as f32 / z_slices as f32;

                let y = f32::sqrt(per_layer / aspect_ratio);

                let mut x = (y * aspect_ratio) as u32;
                let mut y = y as u32;

                // check extremes
                if x == 0 {
                    x = 1;
                    y = per_layer as u32;
                }
                if y == 0 {
                    x = per_layer as u32;
                    y = 1;
                }

                UVec3::new(x, y, z_slices)
            }
        }
    }

    fn first_slice_depth(&self) -> f32 {
        match self {
            ClusterConfig::None | ClusterConfig::Single => 0.0,
            ClusterConfig::XYZ { z_config, .. } | ClusterConfig::FixedZ { z_config, .. } => {
                z_config.first_slice_depth
            }
        }
    }

    fn far_z_mode(&self) -> ClusterFarZMode {
        match self {
            ClusterConfig::None => ClusterFarZMode::Constant(0.0),
            ClusterConfig::Single => ClusterFarZMode::MaxClusterableObjectRange,
            ClusterConfig::XYZ { z_config, .. } | ClusterConfig::FixedZ { z_config, .. } => {
                z_config.far_z_mode
            }
        }
    }

    fn dynamic_resizing(&self) -> bool {
        match self {
            ClusterConfig::None | ClusterConfig::Single => false,
            ClusterConfig::XYZ {
                dynamic_resizing, ..
            }
            | ClusterConfig::FixedZ {
                dynamic_resizing, ..
            } => *dynamic_resizing,
        }
    }
}

impl Clusters {
    fn update(&mut self, screen_size: UVec2, requested_dimensions: UVec3) {
        debug_assert!(
            requested_dimensions.x > 0 && requested_dimensions.y > 0 && requested_dimensions.z > 0
        );

        let tile_size = (screen_size.as_vec2() / requested_dimensions.xy().as_vec2())
            .ceil()
            .as_uvec2()
            .max(UVec2::ONE);
        self.tile_size = tile_size;
        self.dimensions = (screen_size.as_vec2() / tile_size.as_vec2())
            .ceil()
            .as_uvec2()
            .extend(requested_dimensions.z)
            .max(UVec3::ONE);

        // NOTE: Maximum 4096 clusters due to uniform buffer size constraints
        debug_assert!(self.dimensions.x * self.dimensions.y * self.dimensions.z <= 4096);
    }
    fn clear(&mut self) {
        self.tile_size = UVec2::ONE;
        self.dimensions = UVec3::ZERO;
        self.near = 0.0;
        self.far = 0.0;
        self.clusterable_objects.clear();
    }
}

pub fn add_clusters(
    mut commands: Commands,
    cameras: Query<(Entity, Option<&ClusterConfig>, &Camera), Without<Clusters>>,
) {
    for (entity, config, camera) in &cameras {
        if !camera.is_active {
            continue;
        }

        let config = config.copied().unwrap_or_default();
        // actual settings here don't matter - they will be overwritten in
        // `assign_objects_to_clusters``
        commands
            .entity(entity)
            .insert((Clusters::default(), config));
    }
}

impl VisibleClusterableObjects {
    #[inline]
    pub fn iter(&self) -> impl DoubleEndedIterator<Item = &Entity> {
        self.entities.iter()
    }

    #[inline]
    pub fn len(&self) -> usize {
        self.entities.len()
    }

    #[inline]
    pub fn is_empty(&self) -> bool {
        self.entities.is_empty()
    }
}

impl GlobalVisibleClusterableObjects {
    #[inline]
    pub fn iter(&self) -> impl Iterator<Item = &Entity> {
        self.entities.iter()
    }

    #[inline]
    pub fn contains(&self, entity: Entity) -> bool {
        self.entities.contains(&entity)
    }
}

impl FromWorld for GlobalClusterableObjectMeta {
    fn from_world(world: &mut World) -> Self {
        Self::new(
            world
                .resource::<RenderDevice>()
                .get_supported_read_only_binding_type(CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT),
        )
    }
}

impl GlobalClusterableObjectMeta {
    pub fn new(buffer_binding_type: BufferBindingType) -> Self {
        Self {
            gpu_clusterable_objects: GpuClusterableObjects::new(buffer_binding_type),
            entity_to_index: EntityHashMap::default(),
        }
    }
}

impl GpuClusterableObjects {
    fn new(buffer_binding_type: BufferBindingType) -> Self {
        match buffer_binding_type {
            BufferBindingType::Storage { .. } => Self::storage(),
            BufferBindingType::Uniform => Self::uniform(),
        }
    }

    fn uniform() -> Self {
        Self::Uniform(UniformBuffer::default())
    }

    fn storage() -> Self {
        Self::Storage(StorageBuffer::default())
    }

    pub(crate) fn set(&mut self, mut clusterable_objects: Vec<GpuClusterableObject>) {
        match self {
            GpuClusterableObjects::Uniform(buffer) => {
                let len = clusterable_objects
                    .len()
                    .min(MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS);
                let src = &clusterable_objects[..len];
                let dst = &mut buffer.get_mut().data[..len];
                dst.copy_from_slice(src);
            }
            GpuClusterableObjects::Storage(buffer) => {
                buffer.get_mut().data.clear();
                buffer.get_mut().data.append(&mut clusterable_objects);
            }
        }
    }

    pub(crate) fn write_buffer(
        &mut self,
        render_device: &RenderDevice,
        render_queue: &RenderQueue,
    ) {
        match self {
            GpuClusterableObjects::Uniform(buffer) => {
                buffer.write_buffer(render_device, render_queue);
            }
            GpuClusterableObjects::Storage(buffer) => {
                buffer.write_buffer(render_device, render_queue);
            }
        }
    }

    pub fn binding(&self) -> Option<BindingResource> {
        match self {
            GpuClusterableObjects::Uniform(buffer) => buffer.binding(),
            GpuClusterableObjects::Storage(buffer) => buffer.binding(),
        }
    }

    pub fn min_size(buffer_binding_type: BufferBindingType) -> NonZeroU64 {
        match buffer_binding_type {
            BufferBindingType::Storage { .. } => GpuClusterableObjectsStorage::min_size(),
            BufferBindingType::Uniform => GpuClusterableObjectsUniform::min_size(),
        }
    }
}

impl Default for GpuClusterableObjectsUniform {
    fn default() -> Self {
        Self {
            data: Box::new(
                [GpuClusterableObject::default(); MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS],
            ),
        }
    }
}

#[allow(clippy::too_many_arguments)]
// Sort clusterable objects by:
//
// * point-light vs spot-light, so that we can iterate point lights and spot
//   lights in contiguous blocks in the fragment shader,
//
// * then those with shadows enabled first, so that the index can be used to
//   render at most `point_light_shadow_maps_count` point light shadows and
//   `spot_light_shadow_maps_count` spot light shadow maps,
//
// * then by entity as a stable key to ensure that a consistent set of
//   clusterable objects are chosen if the clusterable object count limit is
//   exceeded.
pub(crate) fn clusterable_object_order(
    (entity_1, shadows_enabled_1, is_spot_light_1): (&Entity, &bool, &bool),
    (entity_2, shadows_enabled_2, is_spot_light_2): (&Entity, &bool, &bool),
) -> std::cmp::Ordering {
    is_spot_light_1
        .cmp(is_spot_light_2) // pointlights before spot lights
        .then_with(|| shadows_enabled_2.cmp(shadows_enabled_1)) // shadow casters before non-casters
        .then_with(|| entity_1.cmp(entity_2)) // stable
}

/// Extracts clusters from the main world from the render world.
pub fn extract_clusters(
    mut commands: Commands,
    views: Extract<Query<(Entity, &Clusters, &Camera)>>,
) {
    for (entity, clusters, camera) in &views {
        if !camera.is_active {
            continue;
        }

        let num_entities: usize = clusters
            .clusterable_objects
            .iter()
            .map(|l| l.entities.len())
            .sum();
        let mut data = Vec::with_capacity(clusters.clusterable_objects.len() + num_entities);
        for cluster_objects in &clusters.clusterable_objects {
            data.push(ExtractedClusterableObjectElement::ClusterHeader(
                cluster_objects.point_light_count as u32,
                cluster_objects.spot_light_count as u32,
            ));
            for clusterable_entity in &cluster_objects.entities {
                data.push(ExtractedClusterableObjectElement::ClusterableObjectEntity(
                    *clusterable_entity,
                ));
            }
        }

        commands.get_or_spawn(entity).insert((
            ExtractedClusterableObjects { data },
            ExtractedClusterConfig {
                near: clusters.near,
                far: clusters.far,
                dimensions: clusters.dimensions,
            },
        ));
    }
}

pub fn prepare_clusters(
    mut commands: Commands,
    render_device: Res<RenderDevice>,
    render_queue: Res<RenderQueue>,
    mesh_pipeline: Res<MeshPipeline>,
    global_clusterable_object_meta: Res<GlobalClusterableObjectMeta>,
    views: Query<(Entity, &ExtractedClusterableObjects)>,
) {
    let render_device = render_device.into_inner();
    let supports_storage_buffers = matches!(
        mesh_pipeline.clustered_forward_buffer_binding_type,
        BufferBindingType::Storage { .. }
    );
    for (entity, extracted_clusters) in &views {
        let mut view_clusters_bindings =
            ViewClusterBindings::new(mesh_pipeline.clustered_forward_buffer_binding_type);
        view_clusters_bindings.clear();

        for record in &extracted_clusters.data {
            match record {
                ExtractedClusterableObjectElement::ClusterHeader(
                    point_light_count,
                    spot_light_count,
                ) => {
                    let offset = view_clusters_bindings.n_indices();
                    view_clusters_bindings.push_offset_and_counts(
                        offset,
                        *point_light_count as usize,
                        *spot_light_count as usize,
                    );
                }
                ExtractedClusterableObjectElement::ClusterableObjectEntity(entity) => {
                    if let Some(clusterable_object_index) =
                        global_clusterable_object_meta.entity_to_index.get(entity)
                    {
                        if view_clusters_bindings.n_indices() >= ViewClusterBindings::MAX_INDICES
                            && !supports_storage_buffers
                        {
                            warn!(
                                "Clusterable object index lists are full! The clusterable \
                                 objects in the view are present in too many clusters."
                            );
                            break;
                        }
                        view_clusters_bindings.push_index(*clusterable_object_index);
                    }
                }
            }
        }

        view_clusters_bindings.write_buffers(render_device, &render_queue);

        commands.get_or_spawn(entity).insert(view_clusters_bindings);
    }
}

impl ViewClusterBindings {
    pub const MAX_OFFSETS: usize = 16384 / 4;
    const MAX_UNIFORM_ITEMS: usize = Self::MAX_OFFSETS / 4;
    pub const MAX_INDICES: usize = 16384;

    pub fn new(buffer_binding_type: BufferBindingType) -> Self {
        Self {
            n_indices: 0,
            n_offsets: 0,
            buffers: ViewClusterBuffers::new(buffer_binding_type),
        }
    }

    pub fn clear(&mut self) {
        match &mut self.buffers {
            ViewClusterBuffers::Uniform {
                clusterable_object_index_lists,
                cluster_offsets_and_counts,
            } => {
                *clusterable_object_index_lists.get_mut().data =
                    [UVec4::ZERO; Self::MAX_UNIFORM_ITEMS];
                *cluster_offsets_and_counts.get_mut().data = [UVec4::ZERO; Self::MAX_UNIFORM_ITEMS];
            }
            ViewClusterBuffers::Storage {
                clusterable_object_index_lists,
                cluster_offsets_and_counts,
                ..
            } => {
                clusterable_object_index_lists.get_mut().data.clear();
                cluster_offsets_and_counts.get_mut().data.clear();
            }
        }
    }

    pub fn push_offset_and_counts(&mut self, offset: usize, point_count: usize, spot_count: usize) {
        match &mut self.buffers {
            ViewClusterBuffers::Uniform {
                cluster_offsets_and_counts,
                ..
            } => {
                let array_index = self.n_offsets >> 2; // >> 2 is equivalent to / 4
                if array_index >= Self::MAX_UNIFORM_ITEMS {
                    warn!("cluster offset and count out of bounds!");
                    return;
                }
                let component = self.n_offsets & ((1 << 2) - 1);
                let packed = pack_offset_and_counts(offset, point_count, spot_count);

                cluster_offsets_and_counts.get_mut().data[array_index][component] = packed;
            }
            ViewClusterBuffers::Storage {
                cluster_offsets_and_counts,
                ..
            } => {
                cluster_offsets_and_counts.get_mut().data.push(UVec4::new(
                    offset as u32,
                    point_count as u32,
                    spot_count as u32,
                    0,
                ));
            }
        }

        self.n_offsets += 1;
    }

    pub fn n_indices(&self) -> usize {
        self.n_indices
    }

    pub fn push_index(&mut self, index: usize) {
        match &mut self.buffers {
            ViewClusterBuffers::Uniform {
                clusterable_object_index_lists,
                ..
            } => {
                let array_index = self.n_indices >> 4; // >> 4 is equivalent to / 16
                let component = (self.n_indices >> 2) & ((1 << 2) - 1);
                let sub_index = self.n_indices & ((1 << 2) - 1);
                let index = index as u32;

                clusterable_object_index_lists.get_mut().data[array_index][component] |=
                    index << (8 * sub_index);
            }
            ViewClusterBuffers::Storage {
                clusterable_object_index_lists,
                ..
            } => {
                clusterable_object_index_lists
                    .get_mut()
                    .data
                    .push(index as u32);
            }
        }

        self.n_indices += 1;
    }

    pub fn write_buffers(&mut self, render_device: &RenderDevice, render_queue: &RenderQueue) {
        match &mut self.buffers {
            ViewClusterBuffers::Uniform {
                clusterable_object_index_lists,
                cluster_offsets_and_counts,
            } => {
                clusterable_object_index_lists.write_buffer(render_device, render_queue);
                cluster_offsets_and_counts.write_buffer(render_device, render_queue);
            }
            ViewClusterBuffers::Storage {
                clusterable_object_index_lists,
                cluster_offsets_and_counts,
            } => {
                clusterable_object_index_lists.write_buffer(render_device, render_queue);
                cluster_offsets_and_counts.write_buffer(render_device, render_queue);
            }
        }
    }

    pub fn clusterable_object_index_lists_binding(&self) -> Option<BindingResource> {
        match &self.buffers {
            ViewClusterBuffers::Uniform {
                clusterable_object_index_lists,
                ..
            } => clusterable_object_index_lists.binding(),
            ViewClusterBuffers::Storage {
                clusterable_object_index_lists,
                ..
            } => clusterable_object_index_lists.binding(),
        }
    }

    pub fn offsets_and_counts_binding(&self) -> Option<BindingResource> {
        match &self.buffers {
            ViewClusterBuffers::Uniform {
                cluster_offsets_and_counts,
                ..
            } => cluster_offsets_and_counts.binding(),
            ViewClusterBuffers::Storage {
                cluster_offsets_and_counts,
                ..
            } => cluster_offsets_and_counts.binding(),
        }
    }

    pub fn min_size_clusterable_object_index_lists(
        buffer_binding_type: BufferBindingType,
    ) -> NonZeroU64 {
        match buffer_binding_type {
            BufferBindingType::Storage { .. } => GpuClusterableObjectIndexListsStorage::min_size(),
            BufferBindingType::Uniform => GpuClusterableObjectIndexListsUniform::min_size(),
        }
    }

    pub fn min_size_cluster_offsets_and_counts(
        buffer_binding_type: BufferBindingType,
    ) -> NonZeroU64 {
        match buffer_binding_type {
            BufferBindingType::Storage { .. } => GpuClusterOffsetsAndCountsStorage::min_size(),
            BufferBindingType::Uniform => GpuClusterOffsetsAndCountsUniform::min_size(),
        }
    }
}

impl ViewClusterBuffers {
    fn new(buffer_binding_type: BufferBindingType) -> Self {
        match buffer_binding_type {
            BufferBindingType::Storage { .. } => Self::storage(),
            BufferBindingType::Uniform => Self::uniform(),
        }
    }

    fn uniform() -> Self {
        ViewClusterBuffers::Uniform {
            clusterable_object_index_lists: UniformBuffer::default(),
            cluster_offsets_and_counts: UniformBuffer::default(),
        }
    }

    fn storage() -> Self {
        ViewClusterBuffers::Storage {
            clusterable_object_index_lists: StorageBuffer::default(),
            cluster_offsets_and_counts: StorageBuffer::default(),
        }
    }
}

// NOTE: With uniform buffer max binding size as 16384 bytes
// that means we can fit 256 clusterable objects in one uniform
// buffer, which means the count can be at most 256 so it
// needs 9 bits.
// The array of indices can also use u8 and that means the
// offset in to the array of indices needs to be able to address
// 16384 values. log2(16384) = 14 bits.
// We use 32 bits to store the offset and counts so
// we pack the offset into the upper 14 bits of a u32,
// the point light count into bits 9-17, and the spot light count into bits 0-8.
//  [ 31     ..     18 | 17      ..      9 | 8       ..     0 ]
//  [      offset      | point light count | spot light count ]
// NOTE: This assumes CPU and GPU endianness are the same which is true
// for all common and tested x86/ARM CPUs and AMD/NVIDIA/Intel/Apple/etc GPUs
fn pack_offset_and_counts(offset: usize, point_count: usize, spot_count: usize) -> u32 {
    ((offset as u32 & CLUSTER_OFFSET_MASK) << (CLUSTER_COUNT_SIZE * 2))
        | (point_count as u32 & CLUSTER_COUNT_MASK) << CLUSTER_COUNT_SIZE
        | (spot_count as u32 & CLUSTER_COUNT_MASK)
}

#[derive(ShaderType)]
struct GpuClusterableObjectIndexListsUniform {
    data: Box<[UVec4; ViewClusterBindings::MAX_UNIFORM_ITEMS]>,
}

// NOTE: Assert at compile time that GpuClusterableObjectIndexListsUniform
// fits within the maximum uniform buffer binding size
const _: () = assert!(GpuClusterableObjectIndexListsUniform::SHADER_SIZE.get() <= 16384);

impl Default for GpuClusterableObjectIndexListsUniform {
    fn default() -> Self {
        Self {
            data: Box::new([UVec4::ZERO; ViewClusterBindings::MAX_UNIFORM_ITEMS]),
        }
    }
}

impl Default for GpuClusterOffsetsAndCountsUniform {
    fn default() -> Self {
        Self {
            data: Box::new([UVec4::ZERO; ViewClusterBindings::MAX_UNIFORM_ITEMS]),
        }
    }
}