1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
use bevy_ecs::entity::EntityHashMap;
use bevy_ecs::prelude::*;
use bevy_math::{Mat4, Vec3A, Vec4};
use bevy_reflect::prelude::*;
use bevy_render::{
camera::{Camera, CameraProjection},
extract_component::ExtractComponent,
extract_resource::ExtractResource,
mesh::Mesh,
primitives::{Aabb, CascadesFrusta, CubemapFrusta, Frustum, Sphere},
view::{
InheritedVisibility, RenderLayers, ViewVisibility, VisibilityRange, VisibleEntities,
VisibleEntityRanges, WithMesh,
},
};
use bevy_transform::components::{GlobalTransform, Transform};
use crate::*;
mod ambient_light;
pub use ambient_light::AmbientLight;
mod point_light;
pub use point_light::PointLight;
mod spot_light;
pub use spot_light::SpotLight;
mod directional_light;
pub use directional_light::DirectionalLight;
/// Constants for operating with the light units: lumens, and lux.
pub mod light_consts {
/// Approximations for converting the wattage of lamps to lumens.
///
/// The **lumen** (symbol: **lm**) is the unit of [luminous flux], a measure
/// of the total quantity of [visible light] emitted by a source per unit of
/// time, in the [International System of Units] (SI).
///
/// For more information, see [wikipedia](https://en.wikipedia.org/wiki/Lumen_(unit))
///
/// [luminous flux]: https://en.wikipedia.org/wiki/Luminous_flux
/// [visible light]: https://en.wikipedia.org/wiki/Visible_light
/// [International System of Units]: https://en.wikipedia.org/wiki/International_System_of_Units
pub mod lumens {
pub const LUMENS_PER_LED_WATTS: f32 = 90.0;
pub const LUMENS_PER_INCANDESCENT_WATTS: f32 = 13.8;
pub const LUMENS_PER_HALOGEN_WATTS: f32 = 19.8;
}
/// Predefined for lux values in several locations.
///
/// The **lux** (symbol: **lx**) is the unit of [illuminance], or [luminous flux] per unit area,
/// in the [International System of Units] (SI). It is equal to one lumen per square metre.
///
/// For more information, see [wikipedia](https://en.wikipedia.org/wiki/Lux)
///
/// [illuminance]: https://en.wikipedia.org/wiki/Illuminance
/// [luminous flux]: https://en.wikipedia.org/wiki/Luminous_flux
/// [International System of Units]: https://en.wikipedia.org/wiki/International_System_of_Units
pub mod lux {
/// The amount of light (lux) in a moonless, overcast night sky. (starlight)
pub const MOONLESS_NIGHT: f32 = 0.0001;
/// The amount of light (lux) during a full moon on a clear night.
pub const FULL_MOON_NIGHT: f32 = 0.05;
/// The amount of light (lux) during the dark limit of civil twilight under a clear sky.
pub const CIVIL_TWILIGHT: f32 = 3.4;
/// The amount of light (lux) in family living room lights.
pub const LIVING_ROOM: f32 = 50.;
/// The amount of light (lux) in an office building's hallway/toilet lighting.
pub const HALLWAY: f32 = 80.;
/// The amount of light (lux) in very dark overcast day
pub const DARK_OVERCAST_DAY: f32 = 100.;
/// The amount of light (lux) in an office.
pub const OFFICE: f32 = 320.;
/// The amount of light (lux) during sunrise or sunset on a clear day.
pub const CLEAR_SUNRISE: f32 = 400.;
/// The amount of light (lux) on a overcast day; typical TV studio lighting
pub const OVERCAST_DAY: f32 = 1000.;
/// The amount of light (lux) from ambient daylight (not direct sunlight).
pub const AMBIENT_DAYLIGHT: f32 = 10_000.;
/// The amount of light (lux) in full daylight (not direct sun).
pub const FULL_DAYLIGHT: f32 = 20_000.;
/// The amount of light (lux) in direct sunlight.
pub const DIRECT_SUNLIGHT: f32 = 100_000.;
}
}
#[derive(Resource, Clone, Debug, Reflect)]
#[reflect(Resource)]
pub struct PointLightShadowMap {
pub size: usize,
}
impl Default for PointLightShadowMap {
fn default() -> Self {
Self { size: 1024 }
}
}
/// A convenient alias for `Or<(With<PointLight>, With<SpotLight>,
/// With<DirectionalLight>)>`, for use with [`VisibleEntities`].
pub type WithLight = Or<(With<PointLight>, With<SpotLight>, With<DirectionalLight>)>;
/// Controls the resolution of [`DirectionalLight`] shadow maps.
#[derive(Resource, Clone, Debug, Reflect)]
#[reflect(Resource)]
pub struct DirectionalLightShadowMap {
pub size: usize,
}
impl Default for DirectionalLightShadowMap {
fn default() -> Self {
Self { size: 2048 }
}
}
/// Controls how cascaded shadow mapping works.
/// Prefer using [`CascadeShadowConfigBuilder`] to construct an instance.
///
/// ```
/// # use bevy_pbr::CascadeShadowConfig;
/// # use bevy_pbr::CascadeShadowConfigBuilder;
/// # use bevy_utils::default;
/// #
/// let config: CascadeShadowConfig = CascadeShadowConfigBuilder {
/// maximum_distance: 100.0,
/// ..default()
/// }.into();
/// ```
#[derive(Component, Clone, Debug, Reflect)]
#[reflect(Component, Default)]
pub struct CascadeShadowConfig {
/// The (positive) distance to the far boundary of each cascade.
pub bounds: Vec<f32>,
/// The proportion of overlap each cascade has with the previous cascade.
pub overlap_proportion: f32,
/// The (positive) distance to the near boundary of the first cascade.
pub minimum_distance: f32,
}
impl Default for CascadeShadowConfig {
fn default() -> Self {
CascadeShadowConfigBuilder::default().into()
}
}
fn calculate_cascade_bounds(
num_cascades: usize,
nearest_bound: f32,
shadow_maximum_distance: f32,
) -> Vec<f32> {
if num_cascades == 1 {
return vec![shadow_maximum_distance];
}
let base = (shadow_maximum_distance / nearest_bound).powf(1.0 / (num_cascades - 1) as f32);
(0..num_cascades)
.map(|i| nearest_bound * base.powf(i as f32))
.collect()
}
/// Builder for [`CascadeShadowConfig`].
pub struct CascadeShadowConfigBuilder {
/// The number of shadow cascades.
/// More cascades increases shadow quality by mitigating perspective aliasing - a phenomenon where areas
/// nearer the camera are covered by fewer shadow map texels than areas further from the camera, causing
/// blocky looking shadows.
///
/// This does come at the cost increased rendering overhead, however this overhead is still less
/// than if you were to use fewer cascades and much larger shadow map textures to achieve the
/// same quality level.
///
/// In case rendered geometry covers a relatively narrow and static depth relative to camera, it may
/// make more sense to use fewer cascades and a higher resolution shadow map texture as perspective aliasing
/// is not as much an issue. Be sure to adjust `minimum_distance` and `maximum_distance` appropriately.
pub num_cascades: usize,
/// The minimum shadow distance, which can help improve the texel resolution of the first cascade.
/// Areas nearer to the camera than this will likely receive no shadows.
///
/// NOTE: Due to implementation details, this usually does not impact shadow quality as much as
/// `first_cascade_far_bound` and `maximum_distance`. At many view frustum field-of-views, the
/// texel resolution of the first cascade is dominated by the width / height of the view frustum plane
/// at `first_cascade_far_bound` rather than the depth of the frustum from `minimum_distance` to
/// `first_cascade_far_bound`.
pub minimum_distance: f32,
/// The maximum shadow distance.
/// Areas further from the camera than this will likely receive no shadows.
pub maximum_distance: f32,
/// Sets the far bound of the first cascade, relative to the view origin.
/// In-between cascades will be exponentially spaced relative to the maximum shadow distance.
/// NOTE: This is ignored if there is only one cascade, the maximum distance takes precedence.
pub first_cascade_far_bound: f32,
/// Sets the overlap proportion between cascades.
/// The overlap is used to make the transition from one cascade's shadow map to the next
/// less abrupt by blending between both shadow maps.
pub overlap_proportion: f32,
}
impl CascadeShadowConfigBuilder {
/// Returns the cascade config as specified by this builder.
pub fn build(&self) -> CascadeShadowConfig {
assert!(
self.num_cascades > 0,
"num_cascades must be positive, but was {}",
self.num_cascades
);
assert!(
self.minimum_distance >= 0.0,
"maximum_distance must be non-negative, but was {}",
self.minimum_distance
);
assert!(
self.num_cascades == 1 || self.minimum_distance < self.first_cascade_far_bound,
"minimum_distance must be less than first_cascade_far_bound, but was {}",
self.minimum_distance
);
assert!(
self.maximum_distance > self.minimum_distance,
"maximum_distance must be greater than minimum_distance, but was {}",
self.maximum_distance
);
assert!(
(0.0..1.0).contains(&self.overlap_proportion),
"overlap_proportion must be in [0.0, 1.0) but was {}",
self.overlap_proportion
);
CascadeShadowConfig {
bounds: calculate_cascade_bounds(
self.num_cascades,
self.first_cascade_far_bound,
self.maximum_distance,
),
overlap_proportion: self.overlap_proportion,
minimum_distance: self.minimum_distance,
}
}
}
impl Default for CascadeShadowConfigBuilder {
fn default() -> Self {
if cfg!(all(
feature = "webgl",
target_arch = "wasm32",
not(feature = "webgpu")
)) {
// Currently only support one cascade in webgl.
Self {
num_cascades: 1,
minimum_distance: 0.1,
maximum_distance: 100.0,
first_cascade_far_bound: 5.0,
overlap_proportion: 0.2,
}
} else {
Self {
num_cascades: 4,
minimum_distance: 0.1,
maximum_distance: 1000.0,
first_cascade_far_bound: 5.0,
overlap_proportion: 0.2,
}
}
}
}
impl From<CascadeShadowConfigBuilder> for CascadeShadowConfig {
fn from(builder: CascadeShadowConfigBuilder) -> Self {
builder.build()
}
}
#[derive(Component, Clone, Debug, Default, Reflect)]
#[reflect(Component)]
pub struct Cascades {
/// Map from a view to the configuration of each of its [`Cascade`]s.
pub(crate) cascades: EntityHashMap<Vec<Cascade>>,
}
#[derive(Clone, Debug, Default, Reflect)]
pub struct Cascade {
/// The transform of the light, i.e. the view to world matrix.
pub(crate) world_from_cascade: Mat4,
/// The orthographic projection for this cascade.
pub(crate) clip_from_cascade: Mat4,
/// The view-projection matrix for this cascade, converting world space into light clip space.
/// Importantly, this is derived and stored separately from `view_transform` and `projection` to
/// ensure shadow stability.
pub(crate) clip_from_world: Mat4,
/// Size of each shadow map texel in world units.
pub(crate) texel_size: f32,
}
pub fn clear_directional_light_cascades(mut lights: Query<(&DirectionalLight, &mut Cascades)>) {
for (directional_light, mut cascades) in lights.iter_mut() {
if !directional_light.shadows_enabled {
continue;
}
cascades.cascades.clear();
}
}
pub fn build_directional_light_cascades<P: CameraProjection + Component>(
directional_light_shadow_map: Res<DirectionalLightShadowMap>,
views: Query<(Entity, &GlobalTransform, &P, &Camera)>,
mut lights: Query<(
&GlobalTransform,
&DirectionalLight,
&CascadeShadowConfig,
&mut Cascades,
)>,
) {
let views = views
.iter()
.filter_map(|(entity, transform, projection, camera)| {
if camera.is_active {
Some((entity, projection, transform.compute_matrix()))
} else {
None
}
})
.collect::<Vec<_>>();
for (transform, directional_light, cascades_config, mut cascades) in &mut lights {
if !directional_light.shadows_enabled {
continue;
}
// It is very important to the numerical and thus visual stability of shadows that
// light_to_world has orthogonal upper-left 3x3 and zero translation.
// Even though only the direction (i.e. rotation) of the light matters, we don't constrain
// users to not change any other aspects of the transform - there's no guarantee
// `transform.compute_matrix()` will give us a matrix with our desired properties.
// Instead, we directly create a good matrix from just the rotation.
let world_from_light = Mat4::from_quat(transform.compute_transform().rotation);
let light_to_world_inverse = world_from_light.inverse();
for (view_entity, projection, view_to_world) in views.iter().copied() {
let camera_to_light_view = light_to_world_inverse * view_to_world;
let view_cascades = cascades_config
.bounds
.iter()
.enumerate()
.map(|(idx, far_bound)| {
// Negate bounds as -z is camera forward direction.
let z_near = if idx > 0 {
(1.0 - cascades_config.overlap_proportion)
* -cascades_config.bounds[idx - 1]
} else {
-cascades_config.minimum_distance
};
let z_far = -far_bound;
let corners = projection.get_frustum_corners(z_near, z_far);
calculate_cascade(
corners,
directional_light_shadow_map.size as f32,
world_from_light,
camera_to_light_view,
)
})
.collect();
cascades.cascades.insert(view_entity, view_cascades);
}
}
}
/// Returns a [`Cascade`] for the frustum defined by `frustum_corners`.
/// The corner vertices should be specified in the following order:
/// first the bottom right, top right, top left, bottom left for the near plane, then similar for the far plane.
fn calculate_cascade(
frustum_corners: [Vec3A; 8],
cascade_texture_size: f32,
world_from_light: Mat4,
light_from_camera: Mat4,
) -> Cascade {
let mut min = Vec3A::splat(f32::MAX);
let mut max = Vec3A::splat(f32::MIN);
for corner_camera_view in frustum_corners {
let corner_light_view = light_from_camera.transform_point3a(corner_camera_view);
min = min.min(corner_light_view);
max = max.max(corner_light_view);
}
// NOTE: Use the larger of the frustum slice far plane diagonal and body diagonal lengths as this
// will be the maximum possible projection size. Use the ceiling to get an integer which is
// very important for floating point stability later. It is also important that these are
// calculated using the original camera space corner positions for floating point precision
// as even though the lengths using corner_light_view above should be the same, precision can
// introduce small but significant differences.
// NOTE: The size remains the same unless the view frustum or cascade configuration is modified.
let cascade_diameter = (frustum_corners[0] - frustum_corners[6])
.length()
.max((frustum_corners[4] - frustum_corners[6]).length())
.ceil();
// NOTE: If we ensure that cascade_texture_size is a power of 2, then as we made cascade_diameter an
// integer, cascade_texel_size is then an integer multiple of a power of 2 and can be
// exactly represented in a floating point value.
let cascade_texel_size = cascade_diameter / cascade_texture_size;
// NOTE: For shadow stability it is very important that the near_plane_center is at integer
// multiples of the texel size to be exactly representable in a floating point value.
let near_plane_center = Vec3A::new(
(0.5 * (min.x + max.x) / cascade_texel_size).floor() * cascade_texel_size,
(0.5 * (min.y + max.y) / cascade_texel_size).floor() * cascade_texel_size,
// NOTE: max.z is the near plane for right-handed y-up
max.z,
);
// It is critical for `world_to_cascade` to be stable. So rather than forming `cascade_to_world`
// and inverting it, which risks instability due to numerical precision, we directly form
// `world_to_cascade` as the reference material suggests.
let light_to_world_transpose = world_from_light.transpose();
let cascade_from_world = Mat4::from_cols(
light_to_world_transpose.x_axis,
light_to_world_transpose.y_axis,
light_to_world_transpose.z_axis,
(-near_plane_center).extend(1.0),
);
// Right-handed orthographic projection, centered at `near_plane_center`.
// NOTE: This is different from the reference material, as we use reverse Z.
let r = (max.z - min.z).recip();
let clip_from_cascade = Mat4::from_cols(
Vec4::new(2.0 / cascade_diameter, 0.0, 0.0, 0.0),
Vec4::new(0.0, 2.0 / cascade_diameter, 0.0, 0.0),
Vec4::new(0.0, 0.0, r, 0.0),
Vec4::new(0.0, 0.0, 1.0, 1.0),
);
let clip_from_world = clip_from_cascade * cascade_from_world;
Cascade {
world_from_cascade: cascade_from_world.inverse(),
clip_from_cascade,
clip_from_world,
texel_size: cascade_texel_size,
}
}
/// Add this component to make a [`Mesh`] not cast shadows.
#[derive(Component, Reflect, Default)]
#[reflect(Component, Default)]
pub struct NotShadowCaster;
/// Add this component to make a [`Mesh`] not receive shadows.
///
/// **Note:** If you're using diffuse transmission, setting [`NotShadowReceiver`] will
/// cause both “regular” shadows as well as diffusely transmitted shadows to be disabled,
/// even when [`TransmittedShadowReceiver`] is being used.
#[derive(Component, Reflect, Default)]
#[reflect(Component, Default)]
pub struct NotShadowReceiver;
/// Add this component to make a [`Mesh`] using a PBR material with [`diffuse_transmission`](crate::pbr_material::StandardMaterial::diffuse_transmission)`> 0.0`
/// receive shadows on its diffuse transmission lobe. (i.e. its “backside”)
///
/// Not enabled by default, as it requires carefully setting up [`thickness`](crate::pbr_material::StandardMaterial::thickness)
/// (and potentially even baking a thickness texture!) to match the geometry of the mesh, in order to avoid self-shadow artifacts.
///
/// **Note:** Using [`NotShadowReceiver`] overrides this component.
#[derive(Component, Reflect, Default)]
#[reflect(Component, Default)]
pub struct TransmittedShadowReceiver;
/// Add this component to a [`Camera3d`](bevy_core_pipeline::core_3d::Camera3d)
/// to control how to anti-alias shadow edges.
///
/// The different modes use different approaches to
/// [Percentage Closer Filtering](https://developer.nvidia.com/gpugems/gpugems/part-ii-lighting-and-shadows/chapter-11-shadow-map-antialiasing).
#[derive(Component, ExtractComponent, Reflect, Clone, Copy, PartialEq, Eq, Default)]
#[reflect(Component, Default)]
pub enum ShadowFilteringMethod {
/// Hardware 2x2.
///
/// Fast but poor quality.
Hardware2x2,
/// Approximates a fixed Gaussian blur, good when TAA isn't in use.
///
/// Good quality, good performance.
///
/// For directional and spot lights, this uses a [method by Ignacio Castaño
/// for *The Witness*] using 9 samples and smart filtering to achieve the same
/// as a regular 5x5 filter kernel.
///
/// [method by Ignacio Castaño for *The Witness*]: https://web.archive.org/web/20230210095515/http://the-witness.net/news/2013/09/shadow-mapping-summary-part-1/
#[default]
Gaussian,
/// A randomized filter that varies over time, good when TAA is in use.
///
/// Good quality when used with
/// [`TemporalAntiAliasSettings`](bevy_core_pipeline::experimental::taa::TemporalAntiAliasSettings)
/// and good performance.
///
/// For directional and spot lights, this uses a [method by Jorge Jimenez for
/// *Call of Duty: Advanced Warfare*] using 8 samples in spiral pattern,
/// randomly-rotated by interleaved gradient noise with spatial variation.
///
/// [method by Jorge Jimenez for *Call of Duty: Advanced Warfare*]: https://www.iryoku.com/next-generation-post-processing-in-call-of-duty-advanced-warfare/
Temporal,
}
#[derive(Debug, Hash, PartialEq, Eq, Clone, SystemSet)]
pub enum SimulationLightSystems {
AddClusters,
AssignLightsToClusters,
UpdateDirectionalLightCascades,
UpdateLightFrusta,
CheckLightVisibility,
}
// Sort lights by
// - those with volumetric (and shadows) enabled first, so that the volumetric
// lighting pass can quickly find the volumetric lights;
// - then those with shadows enabled second, so that the index can be used to
// render at most `directional_light_shadow_maps_count` directional light
// shadows;
// - then by entity as a stable key to ensure that a consistent set of lights
// are chosen if the light count limit is exceeded.
pub(crate) fn directional_light_order(
(entity_1, volumetric_1, shadows_enabled_1): (&Entity, &bool, &bool),
(entity_2, volumetric_2, shadows_enabled_2): (&Entity, &bool, &bool),
) -> std::cmp::Ordering {
volumetric_2
.cmp(volumetric_1) // volumetric before shadows
.then_with(|| shadows_enabled_2.cmp(shadows_enabled_1)) // shadow casters before non-casters
.then_with(|| entity_1.cmp(entity_2)) // stable
}
pub fn update_directional_light_frusta(
mut views: Query<
(
&Cascades,
&DirectionalLight,
&ViewVisibility,
&mut CascadesFrusta,
),
(
// Prevents this query from conflicting with camera queries.
Without<Camera>,
),
>,
) {
for (cascades, directional_light, visibility, mut frusta) in &mut views {
// The frustum is used for culling meshes to the light for shadow mapping
// so if shadow mapping is disabled for this light, then the frustum is
// not needed.
if !directional_light.shadows_enabled || !visibility.get() {
continue;
}
frusta.frusta = cascades
.cascades
.iter()
.map(|(view, cascades)| {
(
*view,
cascades
.iter()
.map(|c| Frustum::from_clip_from_world(&c.clip_from_world))
.collect::<Vec<_>>(),
)
})
.collect();
}
}
// NOTE: Run this after assign_lights_to_clusters!
pub fn update_point_light_frusta(
global_lights: Res<GlobalVisibleClusterableObjects>,
mut views: Query<
(Entity, &GlobalTransform, &PointLight, &mut CubemapFrusta),
Or<(Changed<GlobalTransform>, Changed<PointLight>)>,
>,
) {
let clip_from_view =
Mat4::perspective_infinite_reverse_rh(std::f32::consts::FRAC_PI_2, 1.0, POINT_LIGHT_NEAR_Z);
let view_rotations = CUBE_MAP_FACES
.iter()
.map(|CubeMapFace { target, up }| Transform::IDENTITY.looking_at(*target, *up))
.collect::<Vec<_>>();
for (entity, transform, point_light, mut cubemap_frusta) in &mut views {
// The frusta are used for culling meshes to the light for shadow mapping
// so if shadow mapping is disabled for this light, then the frusta are
// not needed.
// Also, if the light is not relevant for any cluster, it will not be in the
// global lights set and so there is no need to update its frusta.
if !point_light.shadows_enabled || !global_lights.entities.contains(&entity) {
continue;
}
// ignore scale because we don't want to effectively scale light radius and range
// by applying those as a view transform to shadow map rendering of objects
// and ignore rotation because we want the shadow map projections to align with the axes
let view_translation = Transform::from_translation(transform.translation());
let view_backward = transform.back();
for (view_rotation, frustum) in view_rotations.iter().zip(cubemap_frusta.iter_mut()) {
let world_from_view = view_translation * *view_rotation;
let clip_from_world = clip_from_view * world_from_view.compute_matrix().inverse();
*frustum = Frustum::from_clip_from_world_custom_far(
&clip_from_world,
&transform.translation(),
&view_backward,
point_light.range,
);
}
}
}
pub fn update_spot_light_frusta(
global_lights: Res<GlobalVisibleClusterableObjects>,
mut views: Query<
(Entity, &GlobalTransform, &SpotLight, &mut Frustum),
Or<(Changed<GlobalTransform>, Changed<SpotLight>)>,
>,
) {
for (entity, transform, spot_light, mut frustum) in &mut views {
// The frusta are used for culling meshes to the light for shadow mapping
// so if shadow mapping is disabled for this light, then the frusta are
// not needed.
// Also, if the light is not relevant for any cluster, it will not be in the
// global lights set and so there is no need to update its frusta.
if !spot_light.shadows_enabled || !global_lights.entities.contains(&entity) {
continue;
}
// ignore scale because we don't want to effectively scale light radius and range
// by applying those as a view transform to shadow map rendering of objects
let view_backward = transform.back();
let spot_world_from_view = spot_light_world_from_view(transform);
let spot_clip_from_view = spot_light_clip_from_view(spot_light.outer_angle);
let clip_from_world = spot_clip_from_view * spot_world_from_view.inverse();
*frustum = Frustum::from_clip_from_world_custom_far(
&clip_from_world,
&transform.translation(),
&view_backward,
spot_light.range,
);
}
}
pub fn check_light_mesh_visibility(
visible_point_lights: Query<&VisibleClusterableObjects>,
mut point_lights: Query<(
&PointLight,
&GlobalTransform,
&CubemapFrusta,
&mut CubemapVisibleEntities,
Option<&RenderLayers>,
)>,
mut spot_lights: Query<(
&SpotLight,
&GlobalTransform,
&Frustum,
&mut VisibleEntities,
Option<&RenderLayers>,
)>,
mut directional_lights: Query<
(
&DirectionalLight,
&CascadesFrusta,
&mut CascadesVisibleEntities,
Option<&RenderLayers>,
&mut ViewVisibility,
),
Without<SpotLight>,
>,
mut visible_entity_query: Query<
(
Entity,
&InheritedVisibility,
&mut ViewVisibility,
Option<&RenderLayers>,
Option<&Aabb>,
Option<&GlobalTransform>,
Has<VisibilityRange>,
),
(
Without<NotShadowCaster>,
Without<DirectionalLight>,
With<Handle<Mesh>>,
),
>,
visible_entity_ranges: Option<Res<VisibleEntityRanges>>,
) {
fn shrink_entities(visible_entities: &mut VisibleEntities) {
// Check that visible entities capacity() is no more than two times greater than len()
let capacity = visible_entities.entities.capacity();
let reserved = capacity
.checked_div(visible_entities.entities.len())
.map_or(0, |reserve| {
if reserve > 2 {
capacity / (reserve / 2)
} else {
capacity
}
});
visible_entities.entities.shrink_to(reserved);
}
let visible_entity_ranges = visible_entity_ranges.as_deref();
// Directional lights
for (directional_light, frusta, mut visible_entities, maybe_view_mask, light_view_visibility) in
&mut directional_lights
{
// Re-use already allocated entries where possible.
let mut views_to_remove = Vec::new();
for (view, cascade_view_entities) in &mut visible_entities.entities {
match frusta.frusta.get(view) {
Some(view_frusta) => {
cascade_view_entities.resize(view_frusta.len(), Default::default());
cascade_view_entities
.iter_mut()
.for_each(|x| x.entities.clear());
}
None => views_to_remove.push(*view),
};
}
for (view, frusta) in &frusta.frusta {
visible_entities
.entities
.entry(*view)
.or_insert_with(|| vec![VisibleEntities::default(); frusta.len()]);
}
for v in views_to_remove {
visible_entities.entities.remove(&v);
}
// NOTE: If shadow mapping is disabled for the light then it must have no visible entities
if !directional_light.shadows_enabled || !light_view_visibility.get() {
continue;
}
let view_mask = maybe_view_mask.unwrap_or_default();
for (
entity,
inherited_visibility,
mut view_visibility,
maybe_entity_mask,
maybe_aabb,
maybe_transform,
has_visibility_range,
) in &mut visible_entity_query
{
if !inherited_visibility.get() {
continue;
}
let entity_mask = maybe_entity_mask.unwrap_or_default();
if !view_mask.intersects(entity_mask) {
continue;
}
// If we have an aabb and transform, do frustum culling
if let (Some(aabb), Some(transform)) = (maybe_aabb, maybe_transform) {
for (view, view_frusta) in &frusta.frusta {
let view_visible_entities = visible_entities
.entities
.get_mut(view)
.expect("Per-view visible entities should have been inserted already");
// Check visibility ranges.
if has_visibility_range
&& visible_entity_ranges.is_some_and(|visible_entity_ranges| {
!visible_entity_ranges.entity_is_in_range_of_view(entity, *view)
})
{
continue;
}
for (frustum, frustum_visible_entities) in
view_frusta.iter().zip(view_visible_entities)
{
// Disable near-plane culling, as a shadow caster could lie before the near plane.
if !frustum.intersects_obb(aabb, &transform.affine(), false, true) {
continue;
}
view_visibility.set();
frustum_visible_entities.get_mut::<WithMesh>().push(entity);
}
}
} else {
view_visibility.set();
for view in frusta.frusta.keys() {
let view_visible_entities = visible_entities
.entities
.get_mut(view)
.expect("Per-view visible entities should have been inserted already");
for frustum_visible_entities in view_visible_entities {
frustum_visible_entities.get_mut::<WithMesh>().push(entity);
}
}
}
}
for (_, cascade_view_entities) in &mut visible_entities.entities {
cascade_view_entities.iter_mut().for_each(shrink_entities);
}
}
for visible_lights in &visible_point_lights {
for light_entity in visible_lights.entities.iter().copied() {
// Point lights
if let Ok((
point_light,
transform,
cubemap_frusta,
mut cubemap_visible_entities,
maybe_view_mask,
)) = point_lights.get_mut(light_entity)
{
for visible_entities in cubemap_visible_entities.iter_mut() {
visible_entities.entities.clear();
}
// NOTE: If shadow mapping is disabled for the light then it must have no visible entities
if !point_light.shadows_enabled {
continue;
}
let view_mask = maybe_view_mask.unwrap_or_default();
let light_sphere = Sphere {
center: Vec3A::from(transform.translation()),
radius: point_light.range,
};
for (
entity,
inherited_visibility,
mut view_visibility,
maybe_entity_mask,
maybe_aabb,
maybe_transform,
has_visibility_range,
) in &mut visible_entity_query
{
if !inherited_visibility.get() {
continue;
}
let entity_mask = maybe_entity_mask.unwrap_or_default();
if !view_mask.intersects(entity_mask) {
continue;
}
// Check visibility ranges.
if has_visibility_range
&& visible_entity_ranges.is_some_and(|visible_entity_ranges| {
!visible_entity_ranges.entity_is_in_range_of_any_view(entity)
})
{
continue;
}
// If we have an aabb and transform, do frustum culling
if let (Some(aabb), Some(transform)) = (maybe_aabb, maybe_transform) {
let model_to_world = transform.affine();
// Do a cheap sphere vs obb test to prune out most meshes outside the sphere of the light
if !light_sphere.intersects_obb(aabb, &model_to_world) {
continue;
}
for (frustum, visible_entities) in cubemap_frusta
.iter()
.zip(cubemap_visible_entities.iter_mut())
{
if frustum.intersects_obb(aabb, &model_to_world, true, true) {
view_visibility.set();
visible_entities.push::<WithMesh>(entity);
}
}
} else {
view_visibility.set();
for visible_entities in cubemap_visible_entities.iter_mut() {
visible_entities.push::<WithMesh>(entity);
}
}
}
for visible_entities in cubemap_visible_entities.iter_mut() {
shrink_entities(visible_entities);
}
}
// Spot lights
if let Ok((point_light, transform, frustum, mut visible_entities, maybe_view_mask)) =
spot_lights.get_mut(light_entity)
{
visible_entities.entities.clear();
// NOTE: If shadow mapping is disabled for the light then it must have no visible entities
if !point_light.shadows_enabled {
continue;
}
let view_mask = maybe_view_mask.unwrap_or_default();
let light_sphere = Sphere {
center: Vec3A::from(transform.translation()),
radius: point_light.range,
};
for (
entity,
inherited_visibility,
mut view_visibility,
maybe_entity_mask,
maybe_aabb,
maybe_transform,
has_visibility_range,
) in &mut visible_entity_query
{
if !inherited_visibility.get() {
continue;
}
let entity_mask = maybe_entity_mask.unwrap_or_default();
if !view_mask.intersects(entity_mask) {
continue;
}
// Check visibility ranges.
if has_visibility_range
&& visible_entity_ranges.is_some_and(|visible_entity_ranges| {
!visible_entity_ranges.entity_is_in_range_of_any_view(entity)
})
{
continue;
}
// If we have an aabb and transform, do frustum culling
if let (Some(aabb), Some(transform)) = (maybe_aabb, maybe_transform) {
let model_to_world = transform.affine();
// Do a cheap sphere vs obb test to prune out most meshes outside the sphere of the light
if !light_sphere.intersects_obb(aabb, &model_to_world) {
continue;
}
if frustum.intersects_obb(aabb, &model_to_world, true, true) {
view_visibility.set();
visible_entities.push::<WithMesh>(entity);
}
} else {
view_visibility.set();
visible_entities.push::<WithMesh>(entity);
}
}
shrink_entities(&mut visible_entities);
}
}
}
}