1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
use bevy_asset::Asset;
use bevy_color::{Alpha, ColorToComponents};
use bevy_math::{vec2, Affine2, Affine3, Mat2, Mat3, Vec2, Vec3, Vec4};
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
use bevy_render::{
mesh::MeshVertexBufferLayoutRef, render_asset::RenderAssets, render_resource::*,
};
use bitflags::bitflags;
use crate::deferred::DEFAULT_PBR_DEFERRED_LIGHTING_PASS_ID;
use crate::*;
/// An enum to define which UV attribute to use for a texture.
/// It is used for every texture in the [`StandardMaterial`].
/// It only supports two UV attributes, [`Mesh::ATTRIBUTE_UV_0`] and [`Mesh::ATTRIBUTE_UV_1`].
/// The default is [`UvChannel::Uv0`].
#[derive(Reflect, Default, Debug, Clone, PartialEq, Eq)]
#[reflect(Default, Debug)]
pub enum UvChannel {
#[default]
Uv0,
Uv1,
}
/// A material with "standard" properties used in PBR lighting
/// Standard property values with pictures here
/// <https://google.github.io/filament/Material%20Properties.pdf>.
///
/// May be created directly from a [`Color`] or an [`Image`].
#[derive(Asset, AsBindGroup, Reflect, Debug, Clone)]
#[bind_group_data(StandardMaterialKey)]
#[uniform(0, StandardMaterialUniform)]
#[reflect(Default, Debug)]
pub struct StandardMaterial {
/// The color of the surface of the material before lighting.
///
/// Doubles as diffuse albedo for non-metallic, specular for metallic and a mix for everything
/// in between. If used together with a `base_color_texture`, this is factored into the final
/// base color as `base_color * base_color_texture_value`
///
/// Defaults to [`Color::WHITE`].
pub base_color: Color,
/// The UV channel to use for the [`StandardMaterial::base_color_texture`].
///
/// Defaults to [`UvChannel::Uv0`].
pub base_color_channel: UvChannel,
/// The texture component of the material's color before lighting.
/// The actual pre-lighting color is `base_color * this_texture`.
///
/// See [`base_color`] for details.
///
/// You should set `base_color` to [`Color::WHITE`] (the default)
/// if you want the texture to show as-is.
///
/// Setting `base_color` to something else than white will tint
/// the texture. For example, setting `base_color` to pure red will
/// tint the texture red.
///
/// [`base_color`]: StandardMaterial::base_color
#[texture(1)]
#[sampler(2)]
#[dependency]
pub base_color_texture: Option<Handle<Image>>,
// Use a color for user friendliness even though we technically don't use the alpha channel
// Might be used in the future for exposure correction in HDR
/// Color the material "emits" to the camera.
///
/// This is typically used for monitor screens or LED lights.
/// Anything that can be visible even in darkness.
///
/// The emissive color is added to what would otherwise be the material's visible color.
/// This means that for a light emissive value, in darkness,
/// you will mostly see the emissive component.
///
/// The default emissive color is [`LinearRgba::BLACK`], which doesn't add anything to the material color.
///
/// To increase emissive strength, channel values for `emissive`
/// colors can exceed `1.0`. For instance, a `base_color` of
/// `LinearRgba::rgb(1.0, 0.0, 0.0)` represents the brightest
/// red for objects that reflect light, but an emissive color
/// like `LinearRgba::rgb(1000.0, 0.0, 0.0)` can be used to create
/// intensely bright red emissive effects.
///
/// Increasing the emissive strength of the color will impact visual effects
/// like bloom, but it's important to note that **an emissive material won't
/// light up surrounding areas like a light source**,
/// it just adds a value to the color seen on screen.
pub emissive: LinearRgba,
/// The weight in which the camera exposure influences the emissive color.
/// A value of `0.0` means the emissive color is not affected by the camera exposure.
/// In opposition, a value of `1.0` means the emissive color is multiplied by the camera exposure.
///
/// Defaults to `0.0`
pub emissive_exposure_weight: f32,
/// The UV channel to use for the [`StandardMaterial::emissive_texture`].
///
/// Defaults to [`UvChannel::Uv0`].
pub emissive_channel: UvChannel,
/// The emissive map, multiplies pixels with [`emissive`]
/// to get the final "emitting" color of a surface.
///
/// This color is multiplied by [`emissive`] to get the final emitted color.
/// Meaning that you should set [`emissive`] to [`Color::WHITE`]
/// if you want to use the full range of color of the emissive texture.
///
/// [`emissive`]: StandardMaterial::emissive
#[texture(3)]
#[sampler(4)]
#[dependency]
pub emissive_texture: Option<Handle<Image>>,
/// Linear perceptual roughness, clamped to `[0.089, 1.0]` in the shader.
///
/// Defaults to `0.5`.
///
/// Low values result in a "glossy" material with specular highlights,
/// while values close to `1` result in rough materials.
///
/// If used together with a roughness/metallic texture, this is factored into the final base
/// color as `roughness * roughness_texture_value`.
///
/// 0.089 is the minimum floating point value that won't be rounded down to 0 in the
/// calculations used.
//
// Technically for 32-bit floats, 0.045 could be used.
// See <https://google.github.io/filament/Filament.html#materialsystem/parameterization/>
pub perceptual_roughness: f32,
/// How "metallic" the material appears, within `[0.0, 1.0]`.
///
/// This should be set to 0.0 for dielectric materials or 1.0 for metallic materials.
/// For a hybrid surface such as corroded metal, you may need to use in-between values.
///
/// Defaults to `0.00`, for dielectric.
///
/// If used together with a roughness/metallic texture, this is factored into the final base
/// color as `metallic * metallic_texture_value`.
pub metallic: f32,
/// The UV channel to use for the [`StandardMaterial::metallic_roughness_texture`].
///
/// Defaults to [`UvChannel::Uv0`].
pub metallic_roughness_channel: UvChannel,
/// Metallic and roughness maps, stored as a single texture.
///
/// The blue channel contains metallic values,
/// and the green channel contains the roughness values.
/// Other channels are unused.
///
/// Those values are multiplied by the scalar ones of the material,
/// see [`metallic`] and [`perceptual_roughness`] for details.
///
/// Note that with the default values of [`metallic`] and [`perceptual_roughness`],
/// setting this texture has no effect. If you want to exclusively use the
/// `metallic_roughness_texture` values for your material, make sure to set [`metallic`]
/// and [`perceptual_roughness`] to `1.0`.
///
/// [`metallic`]: StandardMaterial::metallic
/// [`perceptual_roughness`]: StandardMaterial::perceptual_roughness
#[texture(5)]
#[sampler(6)]
#[dependency]
pub metallic_roughness_texture: Option<Handle<Image>>,
/// Specular intensity for non-metals on a linear scale of `[0.0, 1.0]`.
///
/// Use the value as a way to control the intensity of the
/// specular highlight of the material, i.e. how reflective is the material,
/// rather than the physical property "reflectance."
///
/// Set to `0.0`, no specular highlight is visible, the highlight is strongest
/// when `reflectance` is set to `1.0`.
///
/// Defaults to `0.5` which is mapped to 4% reflectance in the shader.
#[doc(alias = "specular_intensity")]
pub reflectance: f32,
/// The amount of light transmitted _diffusely_ through the material (i.e. “translucency”)
///
/// Implemented as a second, flipped [Lambertian diffuse](https://en.wikipedia.org/wiki/Lambertian_reflectance) lobe,
/// which provides an inexpensive but plausible approximation of translucency for thin dieletric objects (e.g. paper,
/// leaves, some fabrics) or thicker volumetric materials with short scattering distances (e.g. porcelain, wax).
///
/// For specular transmission usecases with refraction (e.g. glass) use the [`StandardMaterial::specular_transmission`] and
/// [`StandardMaterial::ior`] properties instead.
///
/// - When set to `0.0` (the default) no diffuse light is transmitted;
/// - When set to `1.0` all diffuse light is transmitted through the material;
/// - Values higher than `0.5` will cause more diffuse light to be transmitted than reflected, resulting in a “darker”
/// appearance on the side facing the light than the opposite side. (e.g. plant leaves)
///
/// ## Notes
///
/// - The material's [`StandardMaterial::base_color`] also modulates the transmitted light;
/// - To receive transmitted shadows on the diffuse transmission lobe (i.e. the “backside”) of the material,
/// use the [`TransmittedShadowReceiver`] component.
#[doc(alias = "translucency")]
pub diffuse_transmission: f32,
/// The UV channel to use for the [`StandardMaterial::diffuse_transmission_texture`].
///
/// Defaults to [`UvChannel::Uv0`].
#[cfg(feature = "pbr_transmission_textures")]
pub diffuse_transmission_channel: UvChannel,
/// A map that modulates diffuse transmission via its alpha channel. Multiplied by [`StandardMaterial::diffuse_transmission`]
/// to obtain the final result.
///
/// **Important:** The [`StandardMaterial::diffuse_transmission`] property must be set to a value higher than 0.0,
/// or this texture won't have any effect.
#[cfg_attr(feature = "pbr_transmission_textures", texture(19))]
#[cfg_attr(feature = "pbr_transmission_textures", sampler(20))]
#[cfg(feature = "pbr_transmission_textures")]
pub diffuse_transmission_texture: Option<Handle<Image>>,
/// The amount of light transmitted _specularly_ through the material (i.e. via refraction)
///
/// - When set to `0.0` (the default) no light is transmitted.
/// - When set to `1.0` all light is transmitted through the material.
///
/// The material's [`StandardMaterial::base_color`] also modulates the transmitted light.
///
/// **Note:** Typically used in conjunction with [`StandardMaterial::thickness`], [`StandardMaterial::ior`] and [`StandardMaterial::perceptual_roughness`].
///
/// ## Performance
///
/// Specular transmission is implemented as a relatively expensive screen-space effect that allows ocluded objects to be seen through the material,
/// with distortion and blur effects.
///
/// - [`Camera3d::screen_space_specular_transmission_steps`](bevy_core_pipeline::core_3d::Camera3d::screen_space_specular_transmission_steps) can be used to enable transmissive objects
/// to be seen through other transmissive objects, at the cost of additional draw calls and texture copies; (Use with caution!)
/// - If a simplified approximation of specular transmission using only environment map lighting is sufficient, consider setting
/// [`Camera3d::screen_space_specular_transmission_steps`](bevy_core_pipeline::core_3d::Camera3d::screen_space_specular_transmission_steps) to `0`.
/// - If purely diffuse light transmission is needed, (i.e. “translucency”) consider using [`StandardMaterial::diffuse_transmission`] instead,
/// for a much less expensive effect.
/// - Specular transmission is rendered before alpha blending, so any material with [`AlphaMode::Blend`], [`AlphaMode::Premultiplied`], [`AlphaMode::Add`] or [`AlphaMode::Multiply`]
/// won't be visible through specular transmissive materials.
#[doc(alias = "refraction")]
pub specular_transmission: f32,
/// The UV channel to use for the [`StandardMaterial::specular_transmission_texture`].
///
/// Defaults to [`UvChannel::Uv0`].
#[cfg(feature = "pbr_transmission_textures")]
pub specular_transmission_channel: UvChannel,
/// A map that modulates specular transmission via its red channel. Multiplied by [`StandardMaterial::specular_transmission`]
/// to obtain the final result.
///
/// **Important:** The [`StandardMaterial::specular_transmission`] property must be set to a value higher than 0.0,
/// or this texture won't have any effect.
#[cfg_attr(feature = "pbr_transmission_textures", texture(15))]
#[cfg_attr(feature = "pbr_transmission_textures", sampler(16))]
#[cfg(feature = "pbr_transmission_textures")]
pub specular_transmission_texture: Option<Handle<Image>>,
/// Thickness of the volume beneath the material surface.
///
/// When set to `0.0` (the default) the material appears as an infinitely-thin film,
/// transmitting light without distorting it.
///
/// When set to any other value, the material distorts light like a thick lens.
///
/// **Note:** Typically used in conjunction with [`StandardMaterial::specular_transmission`] and [`StandardMaterial::ior`], or with
/// [`StandardMaterial::diffuse_transmission`].
#[doc(alias = "volume")]
#[doc(alias = "thin_walled")]
pub thickness: f32,
/// The UV channel to use for the [`StandardMaterial::thickness_texture`].
///
/// Defaults to [`UvChannel::Uv0`].
#[cfg(feature = "pbr_transmission_textures")]
pub thickness_channel: UvChannel,
/// A map that modulates thickness via its green channel. Multiplied by [`StandardMaterial::thickness`]
/// to obtain the final result.
///
/// **Important:** The [`StandardMaterial::thickness`] property must be set to a value higher than 0.0,
/// or this texture won't have any effect.
#[cfg_attr(feature = "pbr_transmission_textures", texture(17))]
#[cfg_attr(feature = "pbr_transmission_textures", sampler(18))]
#[cfg(feature = "pbr_transmission_textures")]
pub thickness_texture: Option<Handle<Image>>,
/// The [index of refraction](https://en.wikipedia.org/wiki/Refractive_index) of the material.
///
/// Defaults to 1.5.
///
/// | Material | Index of Refraction |
/// |:----------------|:---------------------|
/// | Vacuum | 1 |
/// | Air | 1.00 |
/// | Ice | 1.31 |
/// | Water | 1.33 |
/// | Eyes | 1.38 |
/// | Quartz | 1.46 |
/// | Olive Oil | 1.47 |
/// | Honey | 1.49 |
/// | Acrylic | 1.49 |
/// | Window Glass | 1.52 |
/// | Polycarbonate | 1.58 |
/// | Flint Glass | 1.69 |
/// | Ruby | 1.71 |
/// | Glycerine | 1.74 |
/// | Sapphire | 1.77 |
/// | Cubic Zirconia | 2.15 |
/// | Diamond | 2.42 |
/// | Moissanite | 2.65 |
///
/// **Note:** Typically used in conjunction with [`StandardMaterial::specular_transmission`] and [`StandardMaterial::thickness`].
#[doc(alias = "index_of_refraction")]
#[doc(alias = "refraction_index")]
#[doc(alias = "refractive_index")]
pub ior: f32,
/// How far, on average, light travels through the volume beneath the material's
/// surface before being absorbed.
///
/// Defaults to [`f32::INFINITY`], i.e. light is never absorbed.
///
/// **Note:** To have any effect, must be used in conjunction with:
/// - [`StandardMaterial::attenuation_color`];
/// - [`StandardMaterial::thickness`];
/// - [`StandardMaterial::diffuse_transmission`] or [`StandardMaterial::specular_transmission`].
#[doc(alias = "absorption_distance")]
#[doc(alias = "extinction_distance")]
pub attenuation_distance: f32,
/// The resulting (non-absorbed) color after white light travels through the attenuation distance.
///
/// Defaults to [`Color::WHITE`], i.e. no change.
///
/// **Note:** To have any effect, must be used in conjunction with:
/// - [`StandardMaterial::attenuation_distance`];
/// - [`StandardMaterial::thickness`];
/// - [`StandardMaterial::diffuse_transmission`] or [`StandardMaterial::specular_transmission`].
#[doc(alias = "absorption_color")]
#[doc(alias = "extinction_color")]
pub attenuation_color: Color,
/// The UV channel to use for the [`StandardMaterial::normal_map_texture`].
///
/// Defaults to [`UvChannel::Uv0`].
pub normal_map_channel: UvChannel,
/// Used to fake the lighting of bumps and dents on a material.
///
/// A typical usage would be faking cobblestones on a flat plane mesh in 3D.
///
/// # Notes
///
/// Normal mapping with `StandardMaterial` and the core bevy PBR shaders requires:
/// - A normal map texture
/// - Vertex UVs
/// - Vertex tangents
/// - Vertex normals
///
/// Tangents do not have to be stored in your model,
/// they can be generated using the [`Mesh::generate_tangents`] or
/// [`Mesh::with_generated_tangents`] methods.
/// If your material has a normal map, but still renders as a flat surface,
/// make sure your meshes have their tangents set.
///
/// [`Mesh::generate_tangents`]: bevy_render::mesh::Mesh::generate_tangents
/// [`Mesh::with_generated_tangents`]: bevy_render::mesh::Mesh::with_generated_tangents
#[texture(9)]
#[sampler(10)]
#[dependency]
pub normal_map_texture: Option<Handle<Image>>,
/// Normal map textures authored for DirectX have their y-component flipped. Set this to flip
/// it to right-handed conventions.
pub flip_normal_map_y: bool,
/// The UV channel to use for the [`StandardMaterial::occlusion_texture`].
///
/// Defaults to [`UvChannel::Uv0`].
pub occlusion_channel: UvChannel,
/// Specifies the level of exposure to ambient light.
///
/// This is usually generated and stored automatically ("baked") by 3D-modelling software.
///
/// Typically, steep concave parts of a model (such as the armpit of a shirt) are darker,
/// because they have little exposure to light.
/// An occlusion map specifies those parts of the model that light doesn't reach well.
///
/// The material will be less lit in places where this texture is dark.
/// This is similar to ambient occlusion, but built into the model.
#[texture(7)]
#[sampler(8)]
#[dependency]
pub occlusion_texture: Option<Handle<Image>>,
/// An extra thin translucent layer on top of the main PBR layer. This is
/// typically used for painted surfaces.
///
/// This value specifies the strength of the layer, which affects how
/// visible the clearcoat layer will be.
///
/// Defaults to zero, specifying no clearcoat layer.
pub clearcoat: f32,
/// The UV channel to use for the [`StandardMaterial::clearcoat_texture`].
///
/// Defaults to [`UvChannel::Uv0`].
#[cfg(feature = "pbr_multi_layer_material_textures")]
pub clearcoat_channel: UvChannel,
/// An image texture that specifies the strength of the clearcoat layer in
/// the red channel. Values sampled from this texture are multiplied by the
/// main [`StandardMaterial::clearcoat`] factor.
///
/// As this is a non-color map, it must not be loaded as sRGB.
#[cfg_attr(feature = "pbr_multi_layer_material_textures", texture(21))]
#[cfg_attr(feature = "pbr_multi_layer_material_textures", sampler(22))]
#[cfg(feature = "pbr_multi_layer_material_textures")]
pub clearcoat_texture: Option<Handle<Image>>,
/// The roughness of the clearcoat material. This is specified in exactly
/// the same way as the [`StandardMaterial::perceptual_roughness`].
///
/// If the [`StandardMaterial::clearcoat`] value if zero, this has no
/// effect.
///
/// Defaults to 0.5.
pub clearcoat_perceptual_roughness: f32,
/// The UV channel to use for the [`StandardMaterial::clearcoat_roughness_texture`].
///
/// Defaults to [`UvChannel::Uv0`].
#[cfg(feature = "pbr_multi_layer_material_textures")]
pub clearcoat_roughness_channel: UvChannel,
/// An image texture that specifies the roughness of the clearcoat level in
/// the green channel. Values from this texture are multiplied by the main
/// [`StandardMaterial::clearcoat_perceptual_roughness`] factor.
///
/// As this is a non-color map, it must not be loaded as sRGB.
#[cfg_attr(feature = "pbr_multi_layer_material_textures", texture(23))]
#[cfg_attr(feature = "pbr_multi_layer_material_textures", sampler(24))]
#[cfg(feature = "pbr_multi_layer_material_textures")]
pub clearcoat_roughness_texture: Option<Handle<Image>>,
/// The UV channel to use for the [`StandardMaterial::clearcoat_normal_texture`].
///
/// Defaults to [`UvChannel::Uv0`].
#[cfg(feature = "pbr_multi_layer_material_textures")]
pub clearcoat_normal_channel: UvChannel,
/// An image texture that specifies a normal map that is to be applied to
/// the clearcoat layer. This can be used to simulate, for example,
/// scratches on an outer layer of varnish. Normal maps are in the same
/// format as [`StandardMaterial::normal_map_texture`].
///
/// Note that, if a clearcoat normal map isn't specified, the main normal
/// map, if any, won't be applied to the clearcoat. If you want a normal map
/// that applies to both the main materal and to the clearcoat, specify it
/// in both [`StandardMaterial::normal_map_texture`] and this field.
///
/// As this is a non-color map, it must not be loaded as sRGB.
#[cfg_attr(feature = "pbr_multi_layer_material_textures", texture(25))]
#[cfg_attr(feature = "pbr_multi_layer_material_textures", sampler(26))]
#[cfg(feature = "pbr_multi_layer_material_textures")]
pub clearcoat_normal_texture: Option<Handle<Image>>,
/// Increases the roughness along a specific direction, so that the specular
/// highlight will be stretched instead of being a circular lobe.
///
/// This value ranges from 0 (perfectly circular) to 1 (maximally
/// stretched). The default direction (corresponding to a
/// [`StandardMaterial::anisotropy_rotation`] of 0) aligns with the
/// *tangent* of the mesh; thus mesh tangents must be specified in order for
/// this parameter to have any meaning. The direction can be changed using
/// the [`StandardMaterial::anisotropy_rotation`] parameter.
///
/// This is typically used for modeling surfaces such as brushed metal and
/// hair, in which one direction of the surface but not the other is smooth.
///
/// See the [`KHR_materials_anisotropy` specification] for more details.
///
/// [`KHR_materials_anisotropy` specification]:
/// https://github.com/KhronosGroup/glTF/blob/main/extensions/2.0/Khronos/KHR_materials_anisotropy/README.md
pub anisotropy_strength: f32,
/// The direction of increased roughness, in radians relative to the mesh
/// tangent.
///
/// This parameter causes the roughness to vary according to the
/// [`StandardMaterial::anisotropy_strength`]. The rotation is applied in
/// tangent-bitangent space; thus, mesh tangents must be present for this
/// parameter to have any meaning.
///
/// This parameter has no effect if
/// [`StandardMaterial::anisotropy_strength`] is zero. Its value can
/// optionally be adjusted across the mesh with the
/// [`StandardMaterial::anisotropy_texture`].
///
/// See the [`KHR_materials_anisotropy` specification] for more details.
///
/// [`KHR_materials_anisotropy` specification]:
/// https://github.com/KhronosGroup/glTF/blob/main/extensions/2.0/Khronos/KHR_materials_anisotropy/README.md
pub anisotropy_rotation: f32,
/// The UV channel to use for the [`StandardMaterial::anisotropy_texture`].
///
/// Defaults to [`UvChannel::Uv0`].
#[cfg(feature = "pbr_anisotropy_texture")]
pub anisotropy_channel: UvChannel,
/// An image texture that allows the
/// [`StandardMaterial::anisotropy_strength`] and
/// [`StandardMaterial::anisotropy_rotation`] to vary across the mesh.
///
/// The [`KHR_materials_anisotropy` specification] defines the format that
/// this texture must take. To summarize: The direction vector is encoded in
/// the red and green channels, while the strength is encoded in the blue
/// channels. For the direction vector, the red and green channels map the
/// color range [0, 1] to the vector range [-1, 1]. The direction vector
/// encoded in this texture modifies the default rotation direction in
/// tangent-bitangent space, before the
/// [`StandardMaterial::anisotropy_rotation`] parameter is applied. The
/// value in the blue channel is multiplied by the
/// [`StandardMaterial::anisotropy_strength`] value to produce the final
/// anisotropy strength.
///
/// As the texel values don't represent colors, this texture must be in
/// linear color space, not sRGB.
///
/// [`KHR_materials_anisotropy` specification]:
/// https://github.com/KhronosGroup/glTF/blob/main/extensions/2.0/Khronos/KHR_materials_anisotropy/README.md
#[cfg_attr(feature = "pbr_anisotropy_texture", texture(13))]
#[cfg_attr(feature = "pbr_anisotropy_texture", sampler(14))]
#[cfg(feature = "pbr_anisotropy_texture")]
pub anisotropy_texture: Option<Handle<Image>>,
/// Support two-sided lighting by automatically flipping the normals for "back" faces
/// within the PBR lighting shader.
///
/// Defaults to `false`.
/// This does not automatically configure backface culling,
/// which can be done via `cull_mode`.
pub double_sided: bool,
/// Whether to cull the "front", "back" or neither side of a mesh.
/// If set to `None`, the two sides of the mesh are visible.
///
/// Defaults to `Some(Face::Back)`.
/// In bevy, the order of declaration of a triangle's vertices
/// in [`Mesh`] defines the triangle's front face.
///
/// When a triangle is in a viewport,
/// if its vertices appear counter-clockwise from the viewport's perspective,
/// then the viewport is seeing the triangle's front face.
/// Conversely, if the vertices appear clockwise, you are seeing the back face.
///
/// In short, in bevy, front faces winds counter-clockwise.
///
/// Your 3D editing software should manage all of that.
///
/// [`Mesh`]: bevy_render::mesh::Mesh
// TODO: include this in reflection somehow (maybe via remote types like serde https://serde.rs/remote-derive.html)
#[reflect(ignore)]
pub cull_mode: Option<Face>,
/// Whether to apply only the base color to this material.
///
/// Normals, occlusion textures, roughness, metallic, reflectance, emissive,
/// shadows, alpha mode and ambient light are ignored if this is set to `true`.
pub unlit: bool,
/// Whether to enable fog for this material.
pub fog_enabled: bool,
/// How to apply the alpha channel of the `base_color_texture`.
///
/// See [`AlphaMode`] for details. Defaults to [`AlphaMode::Opaque`].
pub alpha_mode: AlphaMode,
/// Adjust rendered depth.
///
/// A material with a positive depth bias will render closer to the
/// camera while negative values cause the material to render behind
/// other objects. This is independent of the viewport.
///
/// `depth_bias` affects render ordering and depth write operations
/// using the `wgpu::DepthBiasState::Constant` field.
///
/// [z-fighting]: https://en.wikipedia.org/wiki/Z-fighting
pub depth_bias: f32,
/// The depth map used for [parallax mapping].
///
/// It is a greyscale image where white represents bottom and black the top.
/// If this field is set, bevy will apply [parallax mapping].
/// Parallax mapping, unlike simple normal maps, will move the texture
/// coordinate according to the current perspective,
/// giving actual depth to the texture.
///
/// The visual result is similar to a displacement map,
/// but does not require additional geometry.
///
/// Use the [`parallax_depth_scale`] field to control the depth of the parallax.
///
/// ## Limitations
///
/// - It will look weird on bent/non-planar surfaces.
/// - The depth of the pixel does not reflect its visual position, resulting
/// in artifacts for depth-dependent features such as fog or SSAO.
/// - For the same reason, the geometry silhouette will always be
/// the one of the actual geometry, not the parallaxed version, resulting
/// in awkward looks on intersecting parallaxed surfaces.
///
/// ## Performance
///
/// Parallax mapping requires multiple texture lookups, proportional to
/// [`max_parallax_layer_count`], which might be costly.
///
/// Use the [`parallax_mapping_method`] and [`max_parallax_layer_count`] fields
/// to tweak the shader, trading graphical quality for performance.
///
/// To improve performance, set your `depth_map`'s [`Image::sampler`]
/// filter mode to `FilterMode::Nearest`, as [this paper] indicates, it improves
/// performance a bit.
///
/// To reduce artifacts, avoid steep changes in depth, blurring the depth
/// map helps with this.
///
/// Larger depth maps haves a disproportionate performance impact.
///
/// [this paper]: https://www.diva-portal.org/smash/get/diva2:831762/FULLTEXT01.pdf
/// [parallax mapping]: https://en.wikipedia.org/wiki/Parallax_mapping
/// [`parallax_depth_scale`]: StandardMaterial::parallax_depth_scale
/// [`parallax_mapping_method`]: StandardMaterial::parallax_mapping_method
/// [`max_parallax_layer_count`]: StandardMaterial::max_parallax_layer_count
#[texture(11)]
#[sampler(12)]
#[dependency]
pub depth_map: Option<Handle<Image>>,
/// How deep the offset introduced by the depth map should be.
///
/// Default is `0.1`, anything over that value may look distorted.
/// Lower values lessen the effect.
///
/// The depth is relative to texture size. This means that if your texture
/// occupies a surface of `1` world unit, and `parallax_depth_scale` is `0.1`, then
/// the in-world depth will be of `0.1` world units.
/// If the texture stretches for `10` world units, then the final depth
/// will be of `1` world unit.
pub parallax_depth_scale: f32,
/// Which parallax mapping method to use.
///
/// We recommend that all objects use the same [`ParallaxMappingMethod`], to avoid
/// duplicating and running two shaders.
pub parallax_mapping_method: ParallaxMappingMethod,
/// In how many layers to split the depth maps for parallax mapping.
///
/// If you are seeing jaggy edges, increase this value.
/// However, this incurs a performance cost.
///
/// Dependent on the situation, switching to [`ParallaxMappingMethod::Relief`]
/// and keeping this value low might have better performance than increasing the
/// layer count while using [`ParallaxMappingMethod::Occlusion`].
///
/// Default is `16.0`.
pub max_parallax_layer_count: f32,
/// The exposure (brightness) level of the lightmap, if present.
pub lightmap_exposure: f32,
/// Render method used for opaque materials. (Where `alpha_mode` is [`AlphaMode::Opaque`] or [`AlphaMode::Mask`])
pub opaque_render_method: OpaqueRendererMethod,
/// Used for selecting the deferred lighting pass for deferred materials.
/// Default is [`DEFAULT_PBR_DEFERRED_LIGHTING_PASS_ID`] for default
/// PBR deferred lighting pass. Ignored in the case of forward materials.
pub deferred_lighting_pass_id: u8,
/// The transform applied to the UVs corresponding to `ATTRIBUTE_UV_0` on the mesh before sampling. Default is identity.
pub uv_transform: Affine2,
}
impl StandardMaterial {
/// Horizontal flipping transform
///
/// Multiplying this with another Affine2 returns transformation with horizontally flipped texture coords
pub const FLIP_HORIZONTAL: Affine2 = Affine2 {
matrix2: Mat2::from_cols(Vec2::new(-1.0, 0.0), Vec2::Y),
translation: Vec2::X,
};
/// Vertical flipping transform
///
/// Multiplying this with another Affine2 returns transformation with vertically flipped texture coords
pub const FLIP_VERTICAL: Affine2 = Affine2 {
matrix2: Mat2::from_cols(Vec2::X, Vec2::new(0.0, -1.0)),
translation: Vec2::Y,
};
/// Flipping X 3D transform
///
/// Multiplying this with another Affine3 returns transformation with flipped X coords
pub const FLIP_X: Affine3 = Affine3 {
matrix3: Mat3::from_cols(Vec3::new(-1.0, 0.0, 0.0), Vec3::Y, Vec3::Z),
translation: Vec3::X,
};
/// Flipping Y 3D transform
///
/// Multiplying this with another Affine3 returns transformation with flipped Y coords
pub const FLIP_Y: Affine3 = Affine3 {
matrix3: Mat3::from_cols(Vec3::X, Vec3::new(0.0, -1.0, 0.0), Vec3::Z),
translation: Vec3::Y,
};
/// Flipping Z 3D transform
///
/// Multiplying this with another Affine3 returns transformation with flipped Z coords
pub const FLIP_Z: Affine3 = Affine3 {
matrix3: Mat3::from_cols(Vec3::X, Vec3::Y, Vec3::new(0.0, 0.0, -1.0)),
translation: Vec3::Z,
};
/// Flip the texture coordinates of the material.
pub fn flip(&mut self, horizontal: bool, vertical: bool) {
if horizontal {
// Multiplication of `Affine2` is order dependent, which is why
// we do not use the `*=` operator.
self.uv_transform = Self::FLIP_HORIZONTAL * self.uv_transform;
}
if vertical {
self.uv_transform = Self::FLIP_VERTICAL * self.uv_transform;
}
}
/// Consumes the material and returns a material with flipped texture coordinates
pub fn flipped(mut self, horizontal: bool, vertical: bool) -> Self {
self.flip(horizontal, vertical);
self
}
/// Creates a new material from a given color
pub fn from_color(color: impl Into<Color>) -> Self {
Self::from(color.into())
}
}
impl Default for StandardMaterial {
fn default() -> Self {
StandardMaterial {
// White because it gets multiplied with texture values if someone uses
// a texture.
base_color: Color::WHITE,
base_color_channel: UvChannel::Uv0,
base_color_texture: None,
emissive: LinearRgba::BLACK,
emissive_exposure_weight: 0.0,
emissive_channel: UvChannel::Uv0,
emissive_texture: None,
// Matches Blender's default roughness.
perceptual_roughness: 0.5,
// Metallic should generally be set to 0.0 or 1.0.
metallic: 0.0,
metallic_roughness_channel: UvChannel::Uv0,
metallic_roughness_texture: None,
// Minimum real-world reflectance is 2%, most materials between 2-5%
// Expressed in a linear scale and equivalent to 4% reflectance see
// <https://google.github.io/filament/Material%20Properties.pdf>
reflectance: 0.5,
diffuse_transmission: 0.0,
#[cfg(feature = "pbr_transmission_textures")]
diffuse_transmission_channel: UvChannel::Uv0,
#[cfg(feature = "pbr_transmission_textures")]
diffuse_transmission_texture: None,
specular_transmission: 0.0,
#[cfg(feature = "pbr_transmission_textures")]
specular_transmission_channel: UvChannel::Uv0,
#[cfg(feature = "pbr_transmission_textures")]
specular_transmission_texture: None,
thickness: 0.0,
#[cfg(feature = "pbr_transmission_textures")]
thickness_channel: UvChannel::Uv0,
#[cfg(feature = "pbr_transmission_textures")]
thickness_texture: None,
ior: 1.5,
attenuation_color: Color::WHITE,
attenuation_distance: f32::INFINITY,
occlusion_channel: UvChannel::Uv0,
occlusion_texture: None,
normal_map_channel: UvChannel::Uv0,
normal_map_texture: None,
clearcoat: 0.0,
clearcoat_perceptual_roughness: 0.5,
#[cfg(feature = "pbr_multi_layer_material_textures")]
clearcoat_channel: UvChannel::Uv0,
#[cfg(feature = "pbr_multi_layer_material_textures")]
clearcoat_texture: None,
#[cfg(feature = "pbr_multi_layer_material_textures")]
clearcoat_roughness_channel: UvChannel::Uv0,
#[cfg(feature = "pbr_multi_layer_material_textures")]
clearcoat_roughness_texture: None,
#[cfg(feature = "pbr_multi_layer_material_textures")]
clearcoat_normal_channel: UvChannel::Uv0,
#[cfg(feature = "pbr_multi_layer_material_textures")]
clearcoat_normal_texture: None,
anisotropy_strength: 0.0,
anisotropy_rotation: 0.0,
#[cfg(feature = "pbr_anisotropy_texture")]
anisotropy_channel: UvChannel::Uv0,
#[cfg(feature = "pbr_anisotropy_texture")]
anisotropy_texture: None,
flip_normal_map_y: false,
double_sided: false,
cull_mode: Some(Face::Back),
unlit: false,
fog_enabled: true,
alpha_mode: AlphaMode::Opaque,
depth_bias: 0.0,
depth_map: None,
parallax_depth_scale: 0.1,
max_parallax_layer_count: 16.0,
lightmap_exposure: 1.0,
parallax_mapping_method: ParallaxMappingMethod::Occlusion,
opaque_render_method: OpaqueRendererMethod::Auto,
deferred_lighting_pass_id: DEFAULT_PBR_DEFERRED_LIGHTING_PASS_ID,
uv_transform: Affine2::IDENTITY,
}
}
}
impl From<Color> for StandardMaterial {
fn from(color: Color) -> Self {
StandardMaterial {
base_color: color,
alpha_mode: if color.alpha() < 1.0 {
AlphaMode::Blend
} else {
AlphaMode::Opaque
},
..Default::default()
}
}
}
impl From<Handle<Image>> for StandardMaterial {
fn from(texture: Handle<Image>) -> Self {
StandardMaterial {
base_color_texture: Some(texture),
..Default::default()
}
}
}
// NOTE: These must match the bit flags in bevy_pbr/src/render/pbr_types.wgsl!
bitflags::bitflags! {
/// Bitflags info about the material a shader is currently rendering.
/// This is accessible in the shader in the [`StandardMaterialUniform`]
#[repr(transparent)]
pub struct StandardMaterialFlags: u32 {
const BASE_COLOR_TEXTURE = 1 << 0;
const EMISSIVE_TEXTURE = 1 << 1;
const METALLIC_ROUGHNESS_TEXTURE = 1 << 2;
const OCCLUSION_TEXTURE = 1 << 3;
const DOUBLE_SIDED = 1 << 4;
const UNLIT = 1 << 5;
const TWO_COMPONENT_NORMAL_MAP = 1 << 6;
const FLIP_NORMAL_MAP_Y = 1 << 7;
const FOG_ENABLED = 1 << 8;
const DEPTH_MAP = 1 << 9; // Used for parallax mapping
const SPECULAR_TRANSMISSION_TEXTURE = 1 << 10;
const THICKNESS_TEXTURE = 1 << 11;
const DIFFUSE_TRANSMISSION_TEXTURE = 1 << 12;
const ATTENUATION_ENABLED = 1 << 13;
const CLEARCOAT_TEXTURE = 1 << 14;
const CLEARCOAT_ROUGHNESS_TEXTURE = 1 << 15;
const CLEARCOAT_NORMAL_TEXTURE = 1 << 16;
const ANISOTROPY_TEXTURE = 1 << 17;
const ALPHA_MODE_RESERVED_BITS = Self::ALPHA_MODE_MASK_BITS << Self::ALPHA_MODE_SHIFT_BITS; // ← Bitmask reserving bits for the `AlphaMode`
const ALPHA_MODE_OPAQUE = 0 << Self::ALPHA_MODE_SHIFT_BITS; // ← Values are just sequential values bitshifted into
const ALPHA_MODE_MASK = 1 << Self::ALPHA_MODE_SHIFT_BITS; // the bitmask, and can range from 0 to 7.
const ALPHA_MODE_BLEND = 2 << Self::ALPHA_MODE_SHIFT_BITS; //
const ALPHA_MODE_PREMULTIPLIED = 3 << Self::ALPHA_MODE_SHIFT_BITS; //
const ALPHA_MODE_ADD = 4 << Self::ALPHA_MODE_SHIFT_BITS; // Right now only values 0–5 are used, which still gives
const ALPHA_MODE_MULTIPLY = 5 << Self::ALPHA_MODE_SHIFT_BITS; // ← us "room" for two more modes without adding more bits
const ALPHA_MODE_ALPHA_TO_COVERAGE = 6 << Self::ALPHA_MODE_SHIFT_BITS;
const NONE = 0;
const UNINITIALIZED = 0xFFFF;
}
}
impl StandardMaterialFlags {
const ALPHA_MODE_MASK_BITS: u32 = 0b111;
const ALPHA_MODE_SHIFT_BITS: u32 = 32 - Self::ALPHA_MODE_MASK_BITS.count_ones();
}
/// The GPU representation of the uniform data of a [`StandardMaterial`].
#[derive(Clone, Default, ShaderType)]
pub struct StandardMaterialUniform {
/// Doubles as diffuse albedo for non-metallic, specular for metallic and a mix for everything
/// in between.
pub base_color: Vec4,
// Use a color for user-friendliness even though we technically don't use the alpha channel
// Might be used in the future for exposure correction in HDR
pub emissive: Vec4,
/// Color white light takes after travelling through the attenuation distance underneath the material surface
pub attenuation_color: Vec4,
/// The transform applied to the UVs corresponding to `ATTRIBUTE_UV_0` on the mesh before sampling. Default is identity.
pub uv_transform: Mat3,
/// Linear perceptual roughness, clamped to [0.089, 1.0] in the shader
/// Defaults to minimum of 0.089
pub roughness: f32,
/// From [0.0, 1.0], dielectric to pure metallic
pub metallic: f32,
/// Specular intensity for non-metals on a linear scale of [0.0, 1.0]
/// defaults to 0.5 which is mapped to 4% reflectance in the shader
pub reflectance: f32,
/// Amount of diffuse light transmitted through the material
pub diffuse_transmission: f32,
/// Amount of specular light transmitted through the material
pub specular_transmission: f32,
/// Thickness of the volume underneath the material surface
pub thickness: f32,
/// Index of Refraction
pub ior: f32,
/// How far light travels through the volume underneath the material surface before being absorbed
pub attenuation_distance: f32,
pub clearcoat: f32,
pub clearcoat_perceptual_roughness: f32,
pub anisotropy_strength: f32,
pub anisotropy_rotation: Vec2,
/// The [`StandardMaterialFlags`] accessible in the `wgsl` shader.
pub flags: u32,
/// When the alpha mode mask flag is set, any base color alpha above this cutoff means fully opaque,
/// and any below means fully transparent.
pub alpha_cutoff: f32,
/// The depth of the [`StandardMaterial::depth_map`] to apply.
pub parallax_depth_scale: f32,
/// In how many layers to split the depth maps for Steep parallax mapping.
///
/// If your `parallax_depth_scale` is >0.1 and you are seeing jaggy edges,
/// increase this value. However, this incurs a performance cost.
pub max_parallax_layer_count: f32,
/// The exposure (brightness) level of the lightmap, if present.
pub lightmap_exposure: f32,
/// Using [`ParallaxMappingMethod::Relief`], how many additional
/// steps to use at most to find the depth value.
pub max_relief_mapping_search_steps: u32,
/// ID for specifying which deferred lighting pass should be used for rendering this material, if any.
pub deferred_lighting_pass_id: u32,
}
impl AsBindGroupShaderType<StandardMaterialUniform> for StandardMaterial {
fn as_bind_group_shader_type(
&self,
images: &RenderAssets<GpuImage>,
) -> StandardMaterialUniform {
let mut flags = StandardMaterialFlags::NONE;
if self.base_color_texture.is_some() {
flags |= StandardMaterialFlags::BASE_COLOR_TEXTURE;
}
if self.emissive_texture.is_some() {
flags |= StandardMaterialFlags::EMISSIVE_TEXTURE;
}
if self.metallic_roughness_texture.is_some() {
flags |= StandardMaterialFlags::METALLIC_ROUGHNESS_TEXTURE;
}
if self.occlusion_texture.is_some() {
flags |= StandardMaterialFlags::OCCLUSION_TEXTURE;
}
if self.double_sided {
flags |= StandardMaterialFlags::DOUBLE_SIDED;
}
if self.unlit {
flags |= StandardMaterialFlags::UNLIT;
}
if self.fog_enabled {
flags |= StandardMaterialFlags::FOG_ENABLED;
}
if self.depth_map.is_some() {
flags |= StandardMaterialFlags::DEPTH_MAP;
}
#[cfg(feature = "pbr_transmission_textures")]
{
if self.specular_transmission_texture.is_some() {
flags |= StandardMaterialFlags::SPECULAR_TRANSMISSION_TEXTURE;
}
if self.thickness_texture.is_some() {
flags |= StandardMaterialFlags::THICKNESS_TEXTURE;
}
if self.diffuse_transmission_texture.is_some() {
flags |= StandardMaterialFlags::DIFFUSE_TRANSMISSION_TEXTURE;
}
}
#[cfg(feature = "pbr_anisotropy_texture")]
{
if self.anisotropy_texture.is_some() {
flags |= StandardMaterialFlags::ANISOTROPY_TEXTURE;
}
}
#[cfg(feature = "pbr_multi_layer_material_textures")]
{
if self.clearcoat_texture.is_some() {
flags |= StandardMaterialFlags::CLEARCOAT_TEXTURE;
}
if self.clearcoat_roughness_texture.is_some() {
flags |= StandardMaterialFlags::CLEARCOAT_ROUGHNESS_TEXTURE;
}
if self.clearcoat_normal_texture.is_some() {
flags |= StandardMaterialFlags::CLEARCOAT_NORMAL_TEXTURE;
}
}
let has_normal_map = self.normal_map_texture.is_some();
if has_normal_map {
let normal_map_id = self.normal_map_texture.as_ref().map(|h| h.id()).unwrap();
if let Some(texture) = images.get(normal_map_id) {
match texture.texture_format {
// All 2-component unorm formats
TextureFormat::Rg8Unorm
| TextureFormat::Rg16Unorm
| TextureFormat::Bc5RgUnorm
| TextureFormat::EacRg11Unorm => {
flags |= StandardMaterialFlags::TWO_COMPONENT_NORMAL_MAP;
}
_ => {}
}
}
if self.flip_normal_map_y {
flags |= StandardMaterialFlags::FLIP_NORMAL_MAP_Y;
}
}
// NOTE: 0.5 is from the glTF default - do we want this?
let mut alpha_cutoff = 0.5;
match self.alpha_mode {
AlphaMode::Opaque => flags |= StandardMaterialFlags::ALPHA_MODE_OPAQUE,
AlphaMode::Mask(c) => {
alpha_cutoff = c;
flags |= StandardMaterialFlags::ALPHA_MODE_MASK;
}
AlphaMode::Blend => flags |= StandardMaterialFlags::ALPHA_MODE_BLEND,
AlphaMode::Premultiplied => flags |= StandardMaterialFlags::ALPHA_MODE_PREMULTIPLIED,
AlphaMode::Add => flags |= StandardMaterialFlags::ALPHA_MODE_ADD,
AlphaMode::Multiply => flags |= StandardMaterialFlags::ALPHA_MODE_MULTIPLY,
AlphaMode::AlphaToCoverage => {
flags |= StandardMaterialFlags::ALPHA_MODE_ALPHA_TO_COVERAGE;
}
};
if self.attenuation_distance.is_finite() {
flags |= StandardMaterialFlags::ATTENUATION_ENABLED;
}
let mut emissive = self.emissive.to_vec4();
emissive[3] = self.emissive_exposure_weight;
// Doing this up front saves having to do this repeatedly in the fragment shader.
let anisotropy_rotation = vec2(
self.anisotropy_rotation.cos(),
self.anisotropy_rotation.sin(),
);
StandardMaterialUniform {
base_color: LinearRgba::from(self.base_color).to_vec4(),
emissive,
roughness: self.perceptual_roughness,
metallic: self.metallic,
reflectance: self.reflectance,
clearcoat: self.clearcoat,
clearcoat_perceptual_roughness: self.clearcoat_perceptual_roughness,
anisotropy_strength: self.anisotropy_strength,
anisotropy_rotation,
diffuse_transmission: self.diffuse_transmission,
specular_transmission: self.specular_transmission,
thickness: self.thickness,
ior: self.ior,
attenuation_distance: self.attenuation_distance,
attenuation_color: LinearRgba::from(self.attenuation_color)
.to_f32_array()
.into(),
flags: flags.bits(),
alpha_cutoff,
parallax_depth_scale: self.parallax_depth_scale,
max_parallax_layer_count: self.max_parallax_layer_count,
lightmap_exposure: self.lightmap_exposure,
max_relief_mapping_search_steps: self.parallax_mapping_method.max_steps(),
deferred_lighting_pass_id: self.deferred_lighting_pass_id as u32,
uv_transform: self.uv_transform.into(),
}
}
}
bitflags! {
/// The pipeline key for `StandardMaterial`, packed into 64 bits.
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub struct StandardMaterialKey: u64 {
const CULL_FRONT = 0x000001;
const CULL_BACK = 0x000002;
const NORMAL_MAP = 0x000004;
const RELIEF_MAPPING = 0x000008;
const DIFFUSE_TRANSMISSION = 0x000010;
const SPECULAR_TRANSMISSION = 0x000020;
const CLEARCOAT = 0x000040;
const CLEARCOAT_NORMAL_MAP = 0x000080;
const ANISOTROPY = 0x000100;
const BASE_COLOR_UV = 0x000200;
const EMISSIVE_UV = 0x000400;
const METALLIC_ROUGHNESS_UV = 0x000800;
const OCCLUSION_UV = 0x001000;
const SPECULAR_TRANSMISSION_UV = 0x002000;
const THICKNESS_UV = 0x004000;
const DIFFUSE_TRANSMISSION_UV = 0x008000;
const NORMAL_MAP_UV = 0x010000;
const ANISOTROPY_UV = 0x020000;
const CLEARCOAT_UV = 0x040000;
const CLEARCOAT_ROUGHNESS_UV = 0x080000;
const CLEARCOAT_NORMAL_UV = 0x100000;
const DEPTH_BIAS = 0xffffffff_00000000;
}
}
const STANDARD_MATERIAL_KEY_DEPTH_BIAS_SHIFT: u64 = 32;
impl From<&StandardMaterial> for StandardMaterialKey {
fn from(material: &StandardMaterial) -> Self {
let mut key = StandardMaterialKey::empty();
key.set(
StandardMaterialKey::CULL_FRONT,
material.cull_mode == Some(Face::Front),
);
key.set(
StandardMaterialKey::CULL_BACK,
material.cull_mode == Some(Face::Back),
);
key.set(
StandardMaterialKey::NORMAL_MAP,
material.normal_map_texture.is_some(),
);
key.set(
StandardMaterialKey::RELIEF_MAPPING,
matches!(
material.parallax_mapping_method,
ParallaxMappingMethod::Relief { .. }
),
);
key.set(
StandardMaterialKey::DIFFUSE_TRANSMISSION,
material.diffuse_transmission > 0.0,
);
key.set(
StandardMaterialKey::SPECULAR_TRANSMISSION,
material.specular_transmission > 0.0,
);
key.set(StandardMaterialKey::CLEARCOAT, material.clearcoat > 0.0);
#[cfg(feature = "pbr_multi_layer_material_textures")]
key.set(
StandardMaterialKey::CLEARCOAT_NORMAL_MAP,
material.clearcoat > 0.0 && material.clearcoat_normal_texture.is_some(),
);
key.set(
StandardMaterialKey::ANISOTROPY,
material.anisotropy_strength > 0.0,
);
key.set(
StandardMaterialKey::BASE_COLOR_UV,
material.base_color_channel != UvChannel::Uv0,
);
key.set(
StandardMaterialKey::EMISSIVE_UV,
material.emissive_channel != UvChannel::Uv0,
);
key.set(
StandardMaterialKey::METALLIC_ROUGHNESS_UV,
material.metallic_roughness_channel != UvChannel::Uv0,
);
key.set(
StandardMaterialKey::OCCLUSION_UV,
material.occlusion_channel != UvChannel::Uv0,
);
#[cfg(feature = "pbr_transmission_textures")]
{
key.set(
StandardMaterialKey::SPECULAR_TRANSMISSION_UV,
material.specular_transmission_channel != UvChannel::Uv0,
);
key.set(
StandardMaterialKey::THICKNESS_UV,
material.thickness_channel != UvChannel::Uv0,
);
key.set(
StandardMaterialKey::DIFFUSE_TRANSMISSION_UV,
material.diffuse_transmission_channel != UvChannel::Uv0,
);
}
key.set(
StandardMaterialKey::NORMAL_MAP_UV,
material.normal_map_channel != UvChannel::Uv0,
);
#[cfg(feature = "pbr_anisotropy_texture")]
{
key.set(
StandardMaterialKey::ANISOTROPY_UV,
material.anisotropy_channel != UvChannel::Uv0,
);
}
#[cfg(feature = "pbr_multi_layer_material_textures")]
{
key.set(
StandardMaterialKey::CLEARCOAT_UV,
material.clearcoat_channel != UvChannel::Uv0,
);
key.set(
StandardMaterialKey::CLEARCOAT_ROUGHNESS_UV,
material.clearcoat_roughness_channel != UvChannel::Uv0,
);
key.set(
StandardMaterialKey::CLEARCOAT_NORMAL_UV,
material.clearcoat_normal_channel != UvChannel::Uv0,
);
}
key.insert(StandardMaterialKey::from_bits_retain(
(material.depth_bias as u64) << STANDARD_MATERIAL_KEY_DEPTH_BIAS_SHIFT,
));
key
}
}
impl Material for StandardMaterial {
fn fragment_shader() -> ShaderRef {
PBR_SHADER_HANDLE.into()
}
#[inline]
fn alpha_mode(&self) -> AlphaMode {
self.alpha_mode
}
#[inline]
fn opaque_render_method(&self) -> OpaqueRendererMethod {
match self.opaque_render_method {
// For now, diffuse transmission doesn't work under deferred rendering as we don't pack
// the required data into the GBuffer. If this material is set to `Auto`, we report it as
// `Forward` so that it's rendered correctly, even when the `DefaultOpaqueRendererMethod`
// is set to `Deferred`.
//
// If the developer explicitly sets the `OpaqueRendererMethod` to `Deferred`, we assume
// they know what they're doing and don't override it.
OpaqueRendererMethod::Auto if self.diffuse_transmission > 0.0 => {
OpaqueRendererMethod::Forward
}
other => other,
}
}
#[inline]
fn depth_bias(&self) -> f32 {
self.depth_bias
}
#[inline]
fn reads_view_transmission_texture(&self) -> bool {
self.specular_transmission > 0.0
}
fn prepass_fragment_shader() -> ShaderRef {
PBR_PREPASS_SHADER_HANDLE.into()
}
fn deferred_fragment_shader() -> ShaderRef {
PBR_SHADER_HANDLE.into()
}
#[cfg(feature = "meshlet")]
fn meshlet_mesh_fragment_shader() -> ShaderRef {
Self::fragment_shader()
}
#[cfg(feature = "meshlet")]
fn meshlet_mesh_prepass_fragment_shader() -> ShaderRef {
Self::prepass_fragment_shader()
}
#[cfg(feature = "meshlet")]
fn meshlet_mesh_deferred_fragment_shader() -> ShaderRef {
Self::deferred_fragment_shader()
}
fn specialize(
_pipeline: &MaterialPipeline<Self>,
descriptor: &mut RenderPipelineDescriptor,
_layout: &MeshVertexBufferLayoutRef,
key: MaterialPipelineKey<Self>,
) -> Result<(), SpecializedMeshPipelineError> {
if let Some(fragment) = descriptor.fragment.as_mut() {
let shader_defs = &mut fragment.shader_defs;
for (flags, shader_def) in [
(
StandardMaterialKey::NORMAL_MAP,
"STANDARD_MATERIAL_NORMAL_MAP",
),
(StandardMaterialKey::RELIEF_MAPPING, "RELIEF_MAPPING"),
(
StandardMaterialKey::DIFFUSE_TRANSMISSION,
"STANDARD_MATERIAL_DIFFUSE_TRANSMISSION",
),
(
StandardMaterialKey::SPECULAR_TRANSMISSION,
"STANDARD_MATERIAL_SPECULAR_TRANSMISSION",
),
(
StandardMaterialKey::DIFFUSE_TRANSMISSION
| StandardMaterialKey::SPECULAR_TRANSMISSION,
"STANDARD_MATERIAL_DIFFUSE_OR_SPECULAR_TRANSMISSION",
),
(
StandardMaterialKey::CLEARCOAT,
"STANDARD_MATERIAL_CLEARCOAT",
),
(
StandardMaterialKey::CLEARCOAT_NORMAL_MAP,
"STANDARD_MATERIAL_CLEARCOAT_NORMAL_MAP",
),
(
StandardMaterialKey::ANISOTROPY,
"STANDARD_MATERIAL_ANISOTROPY",
),
(
StandardMaterialKey::BASE_COLOR_UV,
"STANDARD_MATERIAL_BASE_COLOR_UV_B",
),
(
StandardMaterialKey::EMISSIVE_UV,
"STANDARD_MATERIAL_EMISSIVE_UV_B",
),
(
StandardMaterialKey::METALLIC_ROUGHNESS_UV,
"STANDARD_MATERIAL_METALLIC_ROUGHNESS_UV_B",
),
(
StandardMaterialKey::OCCLUSION_UV,
"STANDARD_MATERIAL_OCCLUSION_UV_B",
),
(
StandardMaterialKey::SPECULAR_TRANSMISSION_UV,
"STANDARD_MATERIAL_SPECULAR_TRANSMISSION_UV_B",
),
(
StandardMaterialKey::THICKNESS_UV,
"STANDARD_MATERIAL_THICKNESS_UV_B",
),
(
StandardMaterialKey::DIFFUSE_TRANSMISSION_UV,
"STANDARD_MATERIAL_DIFFUSE_TRANSMISSION_UV_B",
),
(
StandardMaterialKey::NORMAL_MAP_UV,
"STANDARD_MATERIAL_NORMAL_MAP_UV_B",
),
(
StandardMaterialKey::CLEARCOAT_UV,
"STANDARD_MATERIAL_CLEARCOAT_UV_B",
),
(
StandardMaterialKey::CLEARCOAT_ROUGHNESS_UV,
"STANDARD_MATERIAL_CLEARCOAT_ROUGHNESS_UV_B",
),
(
StandardMaterialKey::CLEARCOAT_NORMAL_UV,
"STANDARD_MATERIAL_CLEARCOAT_NORMAL_UV_B",
),
(
StandardMaterialKey::ANISOTROPY_UV,
"STANDARD_MATERIAL_ANISOTROPY_UV",
),
] {
if key.bind_group_data.intersects(flags) {
shader_defs.push(shader_def.into());
}
}
}
descriptor.primitive.cull_mode = if key
.bind_group_data
.contains(StandardMaterialKey::CULL_FRONT)
{
Some(Face::Front)
} else if key.bind_group_data.contains(StandardMaterialKey::CULL_BACK) {
Some(Face::Back)
} else {
None
};
if let Some(label) = &mut descriptor.label {
*label = format!("pbr_{}", *label).into();
}
if let Some(depth_stencil) = descriptor.depth_stencil.as_mut() {
depth_stencil.bias.constant =
(key.bind_group_data.bits() >> STANDARD_MATERIAL_KEY_DEPTH_BIAS_SHIFT) as i32;
}
Ok(())
}
}