pub struct World { /* private fields */ }Expand description
Stores and exposes operations on entities, components, resources, and their associated metadata.
Each Entity has a set of components. Each component can have up to one instance of each
component type. Entity components can be created, updated, removed, and queried using a given
World.
For complex access patterns involving SystemParam,
consider using SystemState.
To mutate different parts of the world simultaneously,
use World::resource_scope or SystemState.
§Resources
Worlds can also store Resources,
which are unique instances of a given type that don’t belong to a specific Entity.
There are also non send resources, which can only be accessed on the main thread.
See Resource for usage.
Implementations§
source§impl World
impl World
sourcepub fn observe<E, B, M>(
&mut self,
system: impl IntoObserverSystem<E, B, M>
) -> EntityWorldMut<'_>
pub fn observe<E, B, M>( &mut self, system: impl IntoObserverSystem<E, B, M> ) -> EntityWorldMut<'_>
sourcepub fn trigger(&mut self, event: impl Event)
pub fn trigger(&mut self, event: impl Event)
Triggers the given event, which will run any observers watching for it.
sourcepub fn trigger_targets(
&mut self,
event: impl Event,
targets: impl TriggerTargets
)
pub fn trigger_targets( &mut self, event: impl Event, targets: impl TriggerTargets )
Triggers the given event for the given targets, which will run any observers watching for it.
source§impl World
impl World
sourcepub fn register_system<I, O, M, S>(&mut self, system: S) -> SystemId<I, O>where
I: 'static,
O: 'static,
S: IntoSystem<I, O, M> + 'static,
pub fn register_system<I, O, M, S>(&mut self, system: S) -> SystemId<I, O>where
I: 'static,
O: 'static,
S: IntoSystem<I, O, M> + 'static,
Registers a system and returns a SystemId so it can later be called by World::run_system.
It’s possible to register the same systems more than once, they’ll be stored separately.
This is different from adding systems to a Schedule,
because the SystemId that is returned can be used anywhere in the World to run the associated system.
This allows for running systems in a pushed-based fashion.
Using a Schedule is still preferred for most cases
due to its better performance and ability to run non-conflicting systems simultaneously.
sourcepub fn register_boxed_system<I, O>(
&mut self,
system: Box<dyn System<Out = O, In = I>>
) -> SystemId<I, O>where
I: 'static,
O: 'static,
pub fn register_boxed_system<I, O>(
&mut self,
system: Box<dyn System<Out = O, In = I>>
) -> SystemId<I, O>where
I: 'static,
O: 'static,
Similar to Self::register_system, but allows passing in a BoxedSystem.
This is useful if the IntoSystem implementor has already been turned into a
System trait object and put in a Box.
sourcepub fn remove_system<I, O>(
&mut self,
id: SystemId<I, O>
) -> Result<RemovedSystem<I, O>, RegisteredSystemError<I, O>>where
I: 'static,
O: 'static,
pub fn remove_system<I, O>(
&mut self,
id: SystemId<I, O>
) -> Result<RemovedSystem<I, O>, RegisteredSystemError<I, O>>where
I: 'static,
O: 'static,
Removes a registered system and returns the system, if it exists.
After removing a system, the SystemId becomes invalid and attempting to use it afterwards will result in errors.
Re-adding the removed system will register it on a new SystemId.
If no system corresponds to the given SystemId, this method returns an error.
Systems are also not allowed to remove themselves, this returns an error too.
sourcepub fn run_system<O>(
&mut self,
id: SystemId<(), O>
) -> Result<O, RegisteredSystemError<(), O>>where
O: 'static,
pub fn run_system<O>(
&mut self,
id: SystemId<(), O>
) -> Result<O, RegisteredSystemError<(), O>>where
O: 'static,
Run stored systems by their SystemId.
Before running a system, it must first be registered.
The method World::register_system stores a given system and returns a SystemId.
This is different from RunSystemOnce::run_system_once,
because it keeps local state between calls and change detection works correctly.
In order to run a chained system with an input, use World::run_system_with_input instead.
§Limitations
- Stored systems cannot be recursive, they cannot call themselves through
Commands::run_system.
§Examples
§Running a system
fn increment(mut counter: Local<u8>) {
*counter += 1;
println!("{}", *counter);
}
let mut world = World::default();
let counter_one = world.register_system(increment);
let counter_two = world.register_system(increment);
world.run_system(counter_one); // -> 1
world.run_system(counter_one); // -> 2
world.run_system(counter_two); // -> 1§Change detection
#[derive(Resource, Default)]
struct ChangeDetector;
let mut world = World::default();
world.init_resource::<ChangeDetector>();
let detector = world.register_system(|change_detector: ResMut<ChangeDetector>| {
if change_detector.is_changed() {
println!("Something happened!");
} else {
println!("Nothing happened.");
}
});
// Resources are changed when they are first added
let _ = world.run_system(detector); // -> Something happened!
let _ = world.run_system(detector); // -> Nothing happened.
world.resource_mut::<ChangeDetector>().set_changed();
let _ = world.run_system(detector); // -> Something happened!§Getting system output
#[derive(Resource)]
struct PlayerScore(i32);
#[derive(Resource)]
struct OpponentScore(i32);
fn get_player_score(player_score: Res<PlayerScore>) -> i32 {
player_score.0
}
fn get_opponent_score(opponent_score: Res<OpponentScore>) -> i32 {
opponent_score.0
}
let mut world = World::default();
world.insert_resource(PlayerScore(3));
world.insert_resource(OpponentScore(2));
let scoring_systems = [
("player", world.register_system(get_player_score)),
("opponent", world.register_system(get_opponent_score)),
];
for (label, scoring_system) in scoring_systems {
println!("{label} has score {}", world.run_system(scoring_system).expect("system succeeded"));
}sourcepub fn run_system_with_input<I, O>(
&mut self,
id: SystemId<I, O>,
input: I
) -> Result<O, RegisteredSystemError<I, O>>where
I: 'static,
O: 'static,
pub fn run_system_with_input<I, O>(
&mut self,
id: SystemId<I, O>,
input: I
) -> Result<O, RegisteredSystemError<I, O>>where
I: 'static,
O: 'static,
Run a stored chained system by its SystemId, providing an input value.
Before running a system, it must first be registered.
The method World::register_system stores a given system and returns a SystemId.
§Limitations
- Stored systems cannot be recursive, they cannot call themselves through
Commands::run_system.
§Examples
fn increment(In(increment_by): In<u8>, mut counter: Local<u8>) -> u8 {
*counter += increment_by;
*counter
}
let mut world = World::default();
let counter_one = world.register_system(increment);
let counter_two = world.register_system(increment);
assert_eq!(world.run_system_with_input(counter_one, 1).unwrap(), 1);
assert_eq!(world.run_system_with_input(counter_one, 20).unwrap(), 21);
assert_eq!(world.run_system_with_input(counter_two, 30).unwrap(), 30);See World::run_system for more examples.
source§impl World
impl World
sourcepub fn as_unsafe_world_cell(&mut self) -> UnsafeWorldCell<'_>
pub fn as_unsafe_world_cell(&mut self) -> UnsafeWorldCell<'_>
Creates a new UnsafeWorldCell view with complete read+write access.
sourcepub fn as_unsafe_world_cell_readonly(&self) -> UnsafeWorldCell<'_>
pub fn as_unsafe_world_cell_readonly(&self) -> UnsafeWorldCell<'_>
Creates a new UnsafeWorldCell view with only read access to everything.
sourcepub unsafe fn entities_mut(&mut self) -> &mut Entities
pub unsafe fn entities_mut(&mut self) -> &mut Entities
sourcepub fn archetypes(&self) -> &Archetypes
pub fn archetypes(&self) -> &Archetypes
Retrieves this world’s Archetypes collection.
sourcepub fn components(&self) -> &Components
pub fn components(&self) -> &Components
Retrieves this world’s Components collection.
sourcepub fn removed_components(&self) -> &RemovedComponentEvents
pub fn removed_components(&self) -> &RemovedComponentEvents
Retrieves this world’s RemovedComponentEvents collection
sourcepub fn commands(&mut self) -> Commands<'_, '_>
pub fn commands(&mut self) -> Commands<'_, '_>
Creates a new Commands instance that writes to the world’s command queue
Use World::flush to apply all queued commands
sourcepub fn init_component<T>(&mut self) -> ComponentIdwhere
T: Component,
pub fn init_component<T>(&mut self) -> ComponentIdwhere
T: Component,
Initializes a new Component type and returns the ComponentId created for it.
sourcepub fn register_component_hooks<T>(&mut self) -> &mut ComponentHookswhere
T: Component,
pub fn register_component_hooks<T>(&mut self) -> &mut ComponentHookswhere
T: Component,
Returns a mutable reference to the ComponentHooks for a Component type.
Will panic if T exists in any archetypes.
sourcepub fn register_component_hooks_by_id(
&mut self,
id: ComponentId
) -> Option<&mut ComponentHooks>
pub fn register_component_hooks_by_id( &mut self, id: ComponentId ) -> Option<&mut ComponentHooks>
Returns a mutable reference to the ComponentHooks for a Component with the given id if it exists.
Will panic if id exists in any archetypes.
sourcepub fn init_component_with_descriptor(
&mut self,
descriptor: ComponentDescriptor
) -> ComponentId
pub fn init_component_with_descriptor( &mut self, descriptor: ComponentDescriptor ) -> ComponentId
Initializes a new Component type and returns the ComponentId created for it.
This method differs from World::init_component in that it uses a ComponentDescriptor
to initialize the new component type instead of statically available type information. This
enables the dynamic initialization of new component definitions at runtime for advanced use cases.
While the option to initialize a component from a descriptor is useful in type-erased
contexts, the standard World::init_component function should always be used instead
when type information is available at compile time.
sourcepub fn component_id<T>(&self) -> Option<ComponentId>where
T: Component,
pub fn component_id<T>(&self) -> Option<ComponentId>where
T: Component,
Returns the ComponentId of the given Component type T.
The returned ComponentId is specific to the World instance
it was retrieved from and should not be used with another World instance.
Returns None if the Component type has not yet been initialized within
the World using World::init_component.
use bevy_ecs::prelude::*;
let mut world = World::new();
#[derive(Component)]
struct ComponentA;
let component_a_id = world.init_component::<ComponentA>();
assert_eq!(component_a_id, world.component_id::<ComponentA>().unwrap())§See also
sourcepub fn entity(&self, entity: Entity) -> EntityRef<'_>
pub fn entity(&self, entity: Entity) -> EntityRef<'_>
Retrieves an EntityRef that exposes read-only operations for the given entity.
This will panic if the entity does not exist. Use World::get_entity if you want
to check for entity existence instead of implicitly panic-ing.
use bevy_ecs::{component::Component, world::World};
#[derive(Component)]
struct Position {
x: f32,
y: f32,
}
let mut world = World::new();
let entity = world.spawn(Position { x: 0.0, y: 0.0 }).id();
let position = world.entity(entity).get::<Position>().unwrap();
assert_eq!(position.x, 0.0);sourcepub fn entity_mut(&mut self, entity: Entity) -> EntityWorldMut<'_>
pub fn entity_mut(&mut self, entity: Entity) -> EntityWorldMut<'_>
Retrieves an EntityWorldMut that exposes read and write operations for the given entity.
This will panic if the entity does not exist. Use World::get_entity_mut if you want
to check for entity existence instead of implicitly panic-ing.
use bevy_ecs::{component::Component, world::World};
#[derive(Component)]
struct Position {
x: f32,
y: f32,
}
let mut world = World::new();
let entity = world.spawn(Position { x: 0.0, y: 0.0 }).id();
let mut entity_mut = world.entity_mut(entity);
let mut position = entity_mut.get_mut::<Position>().unwrap();
position.x = 1.0;sourcepub fn many_entities<const N: usize>(
&mut self,
entities: [Entity; N]
) -> [EntityRef<'_>; N]
pub fn many_entities<const N: usize>( &mut self, entities: [Entity; N] ) -> [EntityRef<'_>; N]
sourcepub fn many_entities_mut<const N: usize>(
&mut self,
entities: [Entity; N]
) -> [EntityMut<'_>; N]
pub fn many_entities_mut<const N: usize>( &mut self, entities: [Entity; N] ) -> [EntityMut<'_>; N]
Gets mutable access to multiple entities at once.
§Panics
If any entities do not exist in the world, or if the same entity is specified multiple times.
§Examples
Disjoint mutable access.
// Disjoint mutable access.
let [entity1, entity2] = world.many_entities_mut([id1, id2]);Trying to access the same entity multiple times will fail.
world.many_entities_mut([id, id]);sourcepub fn inspect_entity(&self, entity: Entity) -> Vec<&ComponentInfo>
pub fn inspect_entity(&self, entity: Entity) -> Vec<&ComponentInfo>
Returns the components of an Entity through ComponentInfo.
sourcepub fn get_or_spawn(&mut self, entity: Entity) -> Option<EntityWorldMut<'_>>
pub fn get_or_spawn(&mut self, entity: Entity) -> Option<EntityWorldMut<'_>>
Returns an EntityWorldMut for the given entity (if it exists) or spawns one if it doesn’t exist.
This will return None if the entity exists with a different generation.
§Note
Spawning a specific entity value is rarely the right choice. Most apps should favor World::spawn.
This method should generally only be used for sharing entities across apps, and only when they have a
scheme worked out to share an ID space (which doesn’t happen by default).
sourcepub fn get_entity(&self, entity: Entity) -> Option<EntityRef<'_>>
pub fn get_entity(&self, entity: Entity) -> Option<EntityRef<'_>>
Retrieves an EntityRef that exposes read-only operations for the given entity.
Returns None if the entity does not exist.
Instead of unwrapping the value returned from this function, prefer World::entity.
use bevy_ecs::{component::Component, world::World};
#[derive(Component)]
struct Position {
x: f32,
y: f32,
}
let mut world = World::new();
let entity = world.spawn(Position { x: 0.0, y: 0.0 }).id();
let entity_ref = world.get_entity(entity).unwrap();
let position = entity_ref.get::<Position>().unwrap();
assert_eq!(position.x, 0.0);sourcepub fn get_many_entities<const N: usize>(
&self,
entities: [Entity; N]
) -> Result<[EntityRef<'_>; N], Entity>
pub fn get_many_entities<const N: usize>( &self, entities: [Entity; N] ) -> Result<[EntityRef<'_>; N], Entity>
Gets an EntityRef for multiple entities at once.
§Errors
If any entity does not exist in the world.
§Examples
// Getting multiple entities.
let [entity1, entity2] = world.get_many_entities([id1, id2]).unwrap();
// Trying to get a despawned entity will fail.
world.despawn(id2);
assert!(world.get_many_entities([id1, id2]).is_err());sourcepub fn get_many_entities_dynamic<'w>(
&'w self,
entities: &[Entity]
) -> Result<Vec<EntityRef<'w>>, Entity>
pub fn get_many_entities_dynamic<'w>( &'w self, entities: &[Entity] ) -> Result<Vec<EntityRef<'w>>, Entity>
Gets an EntityRef for multiple entities at once, whose number is determined at runtime.
§Errors
If any entity does not exist in the world.
§Examples
// Getting multiple entities.
let entities = world.get_many_entities_dynamic(&[id1, id2]).unwrap();
let entity1 = entities.get(0).unwrap();
let entity2 = entities.get(1).unwrap();
// Trying to get a despawned entity will fail.
world.despawn(id2);
assert!(world.get_many_entities_dynamic(&[id1, id2]).is_err());sourcepub fn iter_entities(&self) -> impl Iterator<Item = EntityRef<'_>>
pub fn iter_entities(&self) -> impl Iterator<Item = EntityRef<'_>>
sourcepub fn iter_entities_mut(&mut self) -> impl Iterator<Item = EntityMut<'_>>
pub fn iter_entities_mut(&mut self) -> impl Iterator<Item = EntityMut<'_>>
Returns a mutable iterator over all entities in the World.
sourcepub fn get_entity_mut(&mut self, entity: Entity) -> Option<EntityWorldMut<'_>>
pub fn get_entity_mut(&mut self, entity: Entity) -> Option<EntityWorldMut<'_>>
Retrieves an EntityWorldMut that exposes read and write operations for the given entity.
Returns None if the entity does not exist.
Instead of unwrapping the value returned from this function, prefer World::entity_mut.
use bevy_ecs::{component::Component, world::World};
#[derive(Component)]
struct Position {
x: f32,
y: f32,
}
let mut world = World::new();
let entity = world.spawn(Position { x: 0.0, y: 0.0 }).id();
let mut entity_mut = world.get_entity_mut(entity).unwrap();
let mut position = entity_mut.get_mut::<Position>().unwrap();
position.x = 1.0;sourcepub fn get_many_entities_mut<const N: usize>(
&mut self,
entities: [Entity; N]
) -> Result<[EntityMut<'_>; N], QueryEntityError>
pub fn get_many_entities_mut<const N: usize>( &mut self, entities: [Entity; N] ) -> Result<[EntityMut<'_>; N], QueryEntityError>
Gets mutable access to multiple entities.
§Errors
If any entities do not exist in the world, or if the same entity is specified multiple times.
§Examples
// Disjoint mutable access.
let [entity1, entity2] = world.get_many_entities_mut([id1, id2]).unwrap();
// Trying to access the same entity multiple times will fail.
assert!(world.get_many_entities_mut([id1, id1]).is_err());sourcepub fn get_many_entities_dynamic_mut<'w>(
&'w mut self,
entities: &[Entity]
) -> Result<Vec<EntityMut<'w>>, QueryEntityError>
pub fn get_many_entities_dynamic_mut<'w>( &'w mut self, entities: &[Entity] ) -> Result<Vec<EntityMut<'w>>, QueryEntityError>
Gets mutable access to multiple entities, whose number is determined at runtime.
§Errors
If any entities do not exist in the world, or if the same entity is specified multiple times.
§Examples
// Disjoint mutable access.
let mut entities = world.get_many_entities_dynamic_mut(&[id1, id2]).unwrap();
let entity1 = entities.get_mut(0).unwrap();
// Trying to access the same entity multiple times will fail.
assert!(world.get_many_entities_dynamic_mut(&[id1, id1]).is_err());sourcepub fn get_many_entities_from_set_mut<'w>(
&'w mut self,
entities: &HashSet<Entity, EntityHash>
) -> Result<Vec<EntityMut<'w>>, QueryEntityError>
pub fn get_many_entities_from_set_mut<'w>( &'w mut self, entities: &HashSet<Entity, EntityHash> ) -> Result<Vec<EntityMut<'w>>, QueryEntityError>
Gets mutable access to multiple entities, contained in a [HashSet].
The uniqueness of items in a [HashSet] allows us to avoid checking for duplicates.
§Errors
If any entities do not exist in the world.
§Examples
let s = EntityHash::default();
let mut set = EntityHashSet::with_hasher(s);
set.insert(id1);
set.insert(id2);
// Disjoint mutable access.
let mut entities = world.get_many_entities_from_set_mut(&set).unwrap();
let entity1 = entities.get_mut(0).unwrap();sourcepub fn spawn_empty(&mut self) -> EntityWorldMut<'_>
pub fn spawn_empty(&mut self) -> EntityWorldMut<'_>
Spawns a new Entity and returns a corresponding EntityWorldMut, which can be used
to add components to the entity or retrieve its id.
use bevy_ecs::{component::Component, world::World};
#[derive(Component)]
struct Position {
x: f32,
y: f32,
}
#[derive(Component)]
struct Label(&'static str);
#[derive(Component)]
struct Num(u32);
let mut world = World::new();
let entity = world.spawn_empty()
.insert(Position { x: 0.0, y: 0.0 }) // add a single component
.insert((Num(1), Label("hello"))) // add a bundle of components
.id();
let position = world.entity(entity).get::<Position>().unwrap();
assert_eq!(position.x, 0.0);sourcepub fn spawn<B>(&mut self, bundle: B) -> EntityWorldMut<'_>where
B: Bundle,
pub fn spawn<B>(&mut self, bundle: B) -> EntityWorldMut<'_>where
B: Bundle,
Spawns a new Entity with a given Bundle of components and returns
a corresponding EntityWorldMut, which can be used to add components to the entity or
retrieve its id.
use bevy_ecs::{bundle::Bundle, component::Component, world::World};
#[derive(Component)]
struct Position {
x: f32,
y: f32,
}
#[derive(Component)]
struct Velocity {
x: f32,
y: f32,
};
#[derive(Component)]
struct Name(&'static str);
#[derive(Bundle)]
struct PhysicsBundle {
position: Position,
velocity: Velocity,
}
let mut world = World::new();
// `spawn` can accept a single component:
world.spawn(Position { x: 0.0, y: 0.0 });
// It can also accept a tuple of components:
world.spawn((
Position { x: 0.0, y: 0.0 },
Velocity { x: 1.0, y: 1.0 },
));
// Or it can accept a pre-defined Bundle of components:
world.spawn(PhysicsBundle {
position: Position { x: 2.0, y: 2.0 },
velocity: Velocity { x: 0.0, y: 4.0 },
});
let entity = world
// Tuples can also mix Bundles and Components
.spawn((
PhysicsBundle {
position: Position { x: 2.0, y: 2.0 },
velocity: Velocity { x: 0.0, y: 4.0 },
},
Name("Elaina Proctor"),
))
// Calling id() will return the unique identifier for the spawned entity
.id();
let position = world.entity(entity).get::<Position>().unwrap();
assert_eq!(position.x, 2.0);sourcepub fn spawn_batch<I>(
&mut self,
iter: I
) -> SpawnBatchIter<'_, <I as IntoIterator>::IntoIter> ⓘ
pub fn spawn_batch<I>( &mut self, iter: I ) -> SpawnBatchIter<'_, <I as IntoIterator>::IntoIter> ⓘ
Spawns a batch of entities with the same component Bundle type. Takes a given
Bundle iterator and returns a corresponding Entity iterator.
This is more efficient than spawning entities and adding components to them individually,
but it is limited to spawning entities with the same Bundle type, whereas spawning
individually is more flexible.
use bevy_ecs::{component::Component, entity::Entity, world::World};
#[derive(Component)]
struct Str(&'static str);
#[derive(Component)]
struct Num(u32);
let mut world = World::new();
let entities = world.spawn_batch(vec![
(Str("a"), Num(0)), // the first entity
(Str("b"), Num(1)), // the second entity
]).collect::<Vec<Entity>>();
assert_eq!(entities.len(), 2);sourcepub fn get<T>(&self, entity: Entity) -> Option<&T>where
T: Component,
pub fn get<T>(&self, entity: Entity) -> Option<&T>where
T: Component,
Retrieves a reference to the given entity’s Component of the given type.
Returns None if the entity does not have a Component of the given type.
use bevy_ecs::{component::Component, world::World};
#[derive(Component)]
struct Position {
x: f32,
y: f32,
}
let mut world = World::new();
let entity = world.spawn(Position { x: 0.0, y: 0.0 }).id();
let position = world.get::<Position>(entity).unwrap();
assert_eq!(position.x, 0.0);sourcepub fn get_mut<T>(&mut self, entity: Entity) -> Option<Mut<'_, T>>where
T: Component,
pub fn get_mut<T>(&mut self, entity: Entity) -> Option<Mut<'_, T>>where
T: Component,
Retrieves a mutable reference to the given entity’s Component of the given type.
Returns None if the entity does not have a Component of the given type.
use bevy_ecs::{component::Component, world::World};
#[derive(Component)]
struct Position {
x: f32,
y: f32,
}
let mut world = World::new();
let entity = world.spawn(Position { x: 0.0, y: 0.0 }).id();
let mut position = world.get_mut::<Position>(entity).unwrap();
position.x = 1.0;sourcepub fn despawn(&mut self, entity: Entity) -> bool
pub fn despawn(&mut self, entity: Entity) -> bool
Despawns the given entity, if it exists. This will also remove all of the entity’s
Components. Returns true if the entity is successfully despawned and false if
the entity does not exist.
§Note
This won’t clean up external references to the entity (such as parent-child relationships
if you’re using bevy_hierarchy), which may leave the world in an invalid state.
use bevy_ecs::{component::Component, world::World};
#[derive(Component)]
struct Position {
x: f32,
y: f32,
}
let mut world = World::new();
let entity = world.spawn(Position { x: 0.0, y: 0.0 }).id();
assert!(world.despawn(entity));
assert!(world.get_entity(entity).is_none());
assert!(world.get::<Position>(entity).is_none());sourcepub fn clear_trackers(&mut self)
pub fn clear_trackers(&mut self)
Clears the internal component tracker state.
The world maintains some internal state about changed and removed components. This state
is used by RemovedComponents to provide access to the entities that had a specific type
of component removed since last tick.
The state is also used for change detection when accessing components and resources outside
of a system, for example via World::get_mut() or World::get_resource_mut().
By clearing this internal state, the world “forgets” about those changes, allowing a new round of detection to be recorded.
When using bevy_ecs as part of the full Bevy engine, this method is called automatically
by bevy_app::App::update and bevy_app::SubApp::update, so you don’t need to call it manually.
When using bevy_ecs as a separate standalone crate however, you do need to call this manually.
// a whole new world
let mut world = World::new();
// you changed it
let entity = world.spawn(Transform::default()).id();
// change is detected
let transform = world.get_mut::<Transform>(entity).unwrap();
assert!(transform.is_changed());
// update the last change tick
world.clear_trackers();
// change is no longer detected
let transform = world.get_mut::<Transform>(entity).unwrap();
assert!(!transform.is_changed());sourcepub fn query<D>(&mut self) -> QueryState<D>where
D: QueryData,
pub fn query<D>(&mut self) -> QueryState<D>where
D: QueryData,
Returns QueryState for the given QueryData, which is used to efficiently
run queries on the World by storing and reusing the QueryState.
use bevy_ecs::{component::Component, entity::Entity, world::World};
#[derive(Component, Debug, PartialEq)]
struct Position {
x: f32,
y: f32,
}
#[derive(Component)]
struct Velocity {
x: f32,
y: f32,
}
let mut world = World::new();
let entities = world.spawn_batch(vec![
(Position { x: 0.0, y: 0.0}, Velocity { x: 1.0, y: 0.0 }),
(Position { x: 0.0, y: 0.0}, Velocity { x: 0.0, y: 1.0 }),
]).collect::<Vec<Entity>>();
let mut query = world.query::<(&mut Position, &Velocity)>();
for (mut position, velocity) in query.iter_mut(&mut world) {
position.x += velocity.x;
position.y += velocity.y;
}
assert_eq!(world.get::<Position>(entities[0]).unwrap(), &Position { x: 1.0, y: 0.0 });
assert_eq!(world.get::<Position>(entities[1]).unwrap(), &Position { x: 0.0, y: 1.0 });To iterate over entities in a deterministic order,
sort the results of the query using the desired component as a key.
Note that this requires fetching the whole result set from the query
and allocation of a Vec to store it.
use bevy_ecs::{component::Component, entity::Entity, world::World};
#[derive(Component, PartialEq, Eq, PartialOrd, Ord, Debug)]
struct Order(i32);
#[derive(Component, PartialEq, Debug)]
struct Label(&'static str);
let mut world = World::new();
let a = world.spawn((Order(2), Label("second"))).id();
let b = world.spawn((Order(3), Label("third"))).id();
let c = world.spawn((Order(1), Label("first"))).id();
let mut entities = world.query::<(Entity, &Order, &Label)>()
.iter(&world)
.collect::<Vec<_>>();
// Sort the query results by their `Order` component before comparing
// to expected results. Query iteration order should not be relied on.
entities.sort_by_key(|e| e.1);
assert_eq!(entities, vec![
(c, &Order(1), &Label("first")),
(a, &Order(2), &Label("second")),
(b, &Order(3), &Label("third")),
]);sourcepub fn query_filtered<D, F>(&mut self) -> QueryState<D, F>where
D: QueryData,
F: QueryFilter,
pub fn query_filtered<D, F>(&mut self) -> QueryState<D, F>where
D: QueryData,
F: QueryFilter,
Returns QueryState for the given filtered QueryData, which is used to efficiently
run queries on the World by storing and reusing the QueryState.
use bevy_ecs::{component::Component, entity::Entity, world::World, query::With};
#[derive(Component)]
struct A;
#[derive(Component)]
struct B;
let mut world = World::new();
let e1 = world.spawn(A).id();
let e2 = world.spawn((A, B)).id();
let mut query = world.query_filtered::<Entity, With<B>>();
let matching_entities = query.iter(&world).collect::<Vec<Entity>>();
assert_eq!(matching_entities, vec![e2]);sourcepub fn removed<T>(&self) -> impl Iterator<Item = Entity>where
T: Component,
pub fn removed<T>(&self) -> impl Iterator<Item = Entity>where
T: Component,
Returns an iterator of entities that had components of type T removed
since the last call to World::clear_trackers.
sourcepub fn removed_with_id(
&self,
component_id: ComponentId
) -> impl Iterator<Item = Entity>
pub fn removed_with_id( &self, component_id: ComponentId ) -> impl Iterator<Item = Entity>
Returns an iterator of entities that had components with the given component_id removed
since the last call to World::clear_trackers.
sourcepub fn init_resource<R>(&mut self) -> ComponentId
pub fn init_resource<R>(&mut self) -> ComponentId
Initializes a new resource and returns the ComponentId created for it.
If the resource already exists, nothing happens.
The value given by the FromWorld::from_world method will be used.
Note that any resource with the Default trait automatically implements FromWorld,
and those default values will be here instead.
sourcepub fn insert_resource<R>(&mut self, value: R)where
R: Resource,
pub fn insert_resource<R>(&mut self, value: R)where
R: Resource,
Inserts a new resource with the given value.
Resources are “unique” data of a given type. If you insert a resource of a type that already exists, you will overwrite any existing data.
sourcepub fn init_non_send_resource<R>(&mut self) -> ComponentIdwhere
R: 'static + FromWorld,
pub fn init_non_send_resource<R>(&mut self) -> ComponentIdwhere
R: 'static + FromWorld,
Initializes a new non-send resource and returns the ComponentId created for it.
If the resource already exists, nothing happens.
The value given by the FromWorld::from_world method will be used.
Note that any resource with the Default trait automatically implements FromWorld,
and those default values will be here instead.
§Panics
Panics if called from a thread other than the main thread.
sourcepub fn insert_non_send_resource<R>(&mut self, value: R)where
R: 'static,
pub fn insert_non_send_resource<R>(&mut self, value: R)where
R: 'static,
Inserts a new non-send resource with the given value.
NonSend resources cannot be sent across threads,
and do not need the Send + Sync bounds.
Systems with NonSend resources are always scheduled on the main thread.
§Panics
If a value is already present, this function will panic if called from a different thread than where the original value was inserted from.
sourcepub fn remove_resource<R>(&mut self) -> Option<R>where
R: Resource,
pub fn remove_resource<R>(&mut self) -> Option<R>where
R: Resource,
Removes the resource of a given type and returns it, if it exists. Otherwise returns None.
sourcepub fn remove_non_send_resource<R>(&mut self) -> Option<R>where
R: 'static,
pub fn remove_non_send_resource<R>(&mut self) -> Option<R>where
R: 'static,
Removes a !Send resource from the world and returns it, if present.
NonSend resources cannot be sent across threads,
and do not need the Send + Sync bounds.
Systems with NonSend resources are always scheduled on the main thread.
Returns None if a value was not previously present.
§Panics
If a value is present, this function will panic if called from a different thread than where the value was inserted from.
sourcepub fn contains_resource<R>(&self) -> boolwhere
R: Resource,
pub fn contains_resource<R>(&self) -> boolwhere
R: Resource,
Returns true if a resource of type R exists. Otherwise returns false.
sourcepub fn contains_non_send<R>(&self) -> boolwhere
R: 'static,
pub fn contains_non_send<R>(&self) -> boolwhere
R: 'static,
Returns true if a resource of type R exists. Otherwise returns false.
sourcepub fn is_resource_added<R>(&self) -> boolwhere
R: Resource,
pub fn is_resource_added<R>(&self) -> boolwhere
R: Resource,
Returns true if a resource of type R exists and was added since the world’s
last_change_tick. Otherwise, this returns false.
This means that:
- When called from an exclusive system, this will check for additions since the system last ran.
- When called elsewhere, this will check for additions since the last time that
World::clear_trackerswas called.
sourcepub fn is_resource_added_by_id(&self, component_id: ComponentId) -> bool
pub fn is_resource_added_by_id(&self, component_id: ComponentId) -> bool
Returns true if a resource with id component_id exists and was added since the world’s
last_change_tick. Otherwise, this returns false.
This means that:
- When called from an exclusive system, this will check for additions since the system last ran.
- When called elsewhere, this will check for additions since the last time that
World::clear_trackerswas called.
sourcepub fn is_resource_changed<R>(&self) -> boolwhere
R: Resource,
pub fn is_resource_changed<R>(&self) -> boolwhere
R: Resource,
Returns true if a resource of type R exists and was modified since the world’s
last_change_tick. Otherwise, this returns false.
This means that:
- When called from an exclusive system, this will check for changes since the system last ran.
- When called elsewhere, this will check for changes since the last time that
World::clear_trackerswas called.
sourcepub fn is_resource_changed_by_id(&self, component_id: ComponentId) -> bool
pub fn is_resource_changed_by_id(&self, component_id: ComponentId) -> bool
Returns true if a resource with id component_id exists and was modified since the world’s
last_change_tick. Otherwise, this returns false.
This means that:
- When called from an exclusive system, this will check for changes since the system last ran.
- When called elsewhere, this will check for changes since the last time that
World::clear_trackerswas called.
sourcepub fn get_resource_change_ticks<R>(&self) -> Option<ComponentTicks>where
R: Resource,
pub fn get_resource_change_ticks<R>(&self) -> Option<ComponentTicks>where
R: Resource,
Retrieves the change ticks for the given resource.
sourcepub fn get_resource_change_ticks_by_id(
&self,
component_id: ComponentId
) -> Option<ComponentTicks>
pub fn get_resource_change_ticks_by_id( &self, component_id: ComponentId ) -> Option<ComponentTicks>
Retrieves the change ticks for the given ComponentId.
You should prefer to use the typed API World::get_resource_change_ticks where possible.
sourcepub fn resource<R>(&self) -> &Rwhere
R: Resource,
pub fn resource<R>(&self) -> &Rwhere
R: Resource,
Gets a reference to the resource of the given type
§Panics
Panics if the resource does not exist.
Use get_resource instead if you want to handle this case.
If you want to instead insert a value if the resource does not exist,
use get_resource_or_insert_with.
sourcepub fn resource_ref<R>(&self) -> Res<'_, R>where
R: Resource,
pub fn resource_ref<R>(&self) -> Res<'_, R>where
R: Resource,
Gets a reference to the resource of the given type
§Panics
Panics if the resource does not exist.
Use get_resource_ref instead if you want to handle this case.
If you want to instead insert a value if the resource does not exist,
use get_resource_or_insert_with.
sourcepub fn resource_mut<R>(&mut self) -> Mut<'_, R>where
R: Resource,
pub fn resource_mut<R>(&mut self) -> Mut<'_, R>where
R: Resource,
Gets a mutable reference to the resource of the given type
§Panics
Panics if the resource does not exist.
Use get_resource_mut instead if you want to handle this case.
If you want to instead insert a value if the resource does not exist,
use get_resource_or_insert_with.
sourcepub fn get_resource<R>(&self) -> Option<&R>where
R: Resource,
pub fn get_resource<R>(&self) -> Option<&R>where
R: Resource,
Gets a reference to the resource of the given type if it exists
sourcepub fn get_resource_ref<R>(&self) -> Option<Res<'_, R>>where
R: Resource,
pub fn get_resource_ref<R>(&self) -> Option<Res<'_, R>>where
R: Resource,
Gets a reference including change detection to the resource of the given type if it exists.
sourcepub fn get_resource_mut<R>(&mut self) -> Option<Mut<'_, R>>where
R: Resource,
pub fn get_resource_mut<R>(&mut self) -> Option<Mut<'_, R>>where
R: Resource,
Gets a mutable reference to the resource of the given type if it exists
sourcepub fn get_resource_or_insert_with<R>(
&mut self,
func: impl FnOnce() -> R
) -> Mut<'_, R>where
R: Resource,
pub fn get_resource_or_insert_with<R>(
&mut self,
func: impl FnOnce() -> R
) -> Mut<'_, R>where
R: Resource,
Gets a mutable reference to the resource of type T if it exists,
otherwise inserts the resource using the result of calling func.
sourcepub fn non_send_resource<R>(&self) -> &Rwhere
R: 'static,
pub fn non_send_resource<R>(&self) -> &Rwhere
R: 'static,
Gets an immutable reference to the non-send resource of the given type, if it exists.
§Panics
Panics if the resource does not exist.
Use get_non_send_resource instead if you want to handle this case.
This function will panic if it isn’t called from the same thread that the resource was inserted from.
sourcepub fn non_send_resource_mut<R>(&mut self) -> Mut<'_, R>where
R: 'static,
pub fn non_send_resource_mut<R>(&mut self) -> Mut<'_, R>where
R: 'static,
Gets a mutable reference to the non-send resource of the given type, if it exists.
§Panics
Panics if the resource does not exist.
Use get_non_send_resource_mut instead if you want to handle this case.
This function will panic if it isn’t called from the same thread that the resource was inserted from.
sourcepub fn get_non_send_resource<R>(&self) -> Option<&R>where
R: 'static,
pub fn get_non_send_resource<R>(&self) -> Option<&R>where
R: 'static,
Gets a reference to the non-send resource of the given type, if it exists.
Otherwise returns None.
§Panics
This function will panic if it isn’t called from the same thread that the resource was inserted from.
sourcepub fn get_non_send_resource_mut<R>(&mut self) -> Option<Mut<'_, R>>where
R: 'static,
pub fn get_non_send_resource_mut<R>(&mut self) -> Option<Mut<'_, R>>where
R: 'static,
Gets a mutable reference to the non-send resource of the given type, if it exists.
Otherwise returns None.
§Panics
This function will panic if it isn’t called from the same thread that the resource was inserted from.
sourcepub fn insert_or_spawn_batch<I, B>(
&mut self,
iter: I
) -> Result<(), Vec<Entity>>
pub fn insert_or_spawn_batch<I, B>( &mut self, iter: I ) -> Result<(), Vec<Entity>>
For a given batch of (Entity, Bundle) pairs, either spawns each Entity with the given
bundle (if the entity does not exist), or inserts the Bundle (if the entity already exists).
This is faster than doing equivalent operations one-by-one.
Returns Ok if all entities were successfully inserted into or spawned. Otherwise it returns an Err
with a list of entities that could not be spawned or inserted into. A “spawn or insert” operation can
only fail if an Entity is passed in with an “invalid generation” that conflicts with an existing Entity.
§Note
Spawning a specific entity value is rarely the right choice. Most apps should use World::spawn_batch.
This method should generally only be used for sharing entities across apps, and only when they have a scheme
worked out to share an ID space (which doesn’t happen by default).
use bevy_ecs::{entity::Entity, world::World, component::Component};
#[derive(Component)]
struct A(&'static str);
#[derive(Component, PartialEq, Debug)]
struct B(f32);
let mut world = World::new();
let e0 = world.spawn_empty().id();
let e1 = world.spawn_empty().id();
world.insert_or_spawn_batch(vec![
(e0, (A("a"), B(0.0))), // the first entity
(e1, (A("b"), B(1.0))), // the second entity
]);
assert_eq!(world.get::<B>(e0), Some(&B(0.0)));sourcepub fn resource_scope<R, U>(
&mut self,
f: impl FnOnce(&mut World, Mut<'_, R>) -> U
) -> Uwhere
R: Resource,
pub fn resource_scope<R, U>(
&mut self,
f: impl FnOnce(&mut World, Mut<'_, R>) -> U
) -> Uwhere
R: Resource,
Temporarily removes the requested resource from this World, runs custom user code,
then re-adds the resource before returning.
This enables safe simultaneous mutable access to both a resource and the rest of the World.
For more complex access patterns, consider using SystemState.
§Example
use bevy_ecs::prelude::*;
#[derive(Resource)]
struct A(u32);
#[derive(Component)]
struct B(u32);
let mut world = World::new();
world.insert_resource(A(1));
let entity = world.spawn(B(1)).id();
world.resource_scope(|world, mut a: Mut<A>| {
let b = world.get_mut::<B>(entity).unwrap();
a.0 += b.0;
});
assert_eq!(world.get_resource::<A>().unwrap().0, 2);sourcepub fn send_event<E>(&mut self, event: E) -> Option<EventId<E>>where
E: Event,
pub fn send_event<E>(&mut self, event: E) -> Option<EventId<E>>where
E: Event,
sourcepub fn send_event_default<E>(&mut self) -> Option<EventId<E>>
pub fn send_event_default<E>(&mut self) -> Option<EventId<E>>
sourcepub fn send_event_batch<E>(
&mut self,
events: impl IntoIterator<Item = E>
) -> Option<SendBatchIds<E>>where
E: Event,
pub fn send_event_batch<E>(
&mut self,
events: impl IntoIterator<Item = E>
) -> Option<SendBatchIds<E>>where
E: Event,
sourcepub unsafe fn insert_resource_by_id(
&mut self,
component_id: ComponentId,
value: OwningPtr<'_>
)
pub unsafe fn insert_resource_by_id( &mut self, component_id: ComponentId, value: OwningPtr<'_> )
Inserts a new resource with the given value. Will replace the value if it already existed.
You should prefer to use the typed API World::insert_resource where possible and only
use this in cases where the actual types are not known at compile time.
§Safety
The value referenced by value must be valid for the given ComponentId of this world.
sourcepub unsafe fn insert_non_send_by_id(
&mut self,
component_id: ComponentId,
value: OwningPtr<'_>
)
pub unsafe fn insert_non_send_by_id( &mut self, component_id: ComponentId, value: OwningPtr<'_> )
Inserts a new !Send resource with the given value. Will replace the value if it already
existed.
You should prefer to use the typed API World::insert_non_send_resource where possible and only
use this in cases where the actual types are not known at compile time.
§Panics
If a value is already present, this function will panic if not called from the same thread that the original value was inserted from.
§Safety
The value referenced by value must be valid for the given ComponentId of this world.
sourcepub fn flush(&mut self)
pub fn flush(&mut self)
Calls both World::flush_entities and World::flush_commands.
sourcepub fn flush_commands(&mut self)
pub fn flush_commands(&mut self)
Applies any commands in the world’s internal CommandQueue.
This does not apply commands from any systems, only those stored in the world.
sourcepub fn increment_change_tick(&self) -> Tick
pub fn increment_change_tick(&self) -> Tick
Increments the world’s current change tick and returns the old value.
sourcepub fn read_change_tick(&self) -> Tick
pub fn read_change_tick(&self) -> Tick
Reads the current change tick of this world.
If you have exclusive (&mut) access to the world, consider using change_tick(),
which is more efficient since it does not require atomic synchronization.
sourcepub fn change_tick(&mut self) -> Tick
pub fn change_tick(&mut self) -> Tick
Reads the current change tick of this world.
This does the same thing as read_change_tick(), only this method
is more efficient since it does not require atomic synchronization.
sourcepub fn last_change_tick(&self) -> Tick
pub fn last_change_tick(&self) -> Tick
When called from within an exclusive system (a System that takes &mut World as its first
parameter), this method returns the Tick indicating the last time the exclusive system was run.
Otherwise, this returns the Tick indicating the last time that World::clear_trackers was called.
sourcepub fn last_change_tick_scope<T>(
&mut self,
last_change_tick: Tick,
f: impl FnOnce(&mut World) -> T
) -> T
pub fn last_change_tick_scope<T>( &mut self, last_change_tick: Tick, f: impl FnOnce(&mut World) -> T ) -> T
Sets World::last_change_tick() to the specified value during a scope.
When the scope terminates, it will return to its old value.
This is useful if you need a region of code to be able to react to earlier changes made in the same system.
§Examples
// This function runs an update loop repeatedly, allowing each iteration of the loop
// to react to changes made in the previous loop iteration.
fn update_loop(
world: &mut World,
mut update_fn: impl FnMut(&mut World) -> std::ops::ControlFlow<()>,
) {
let mut last_change_tick = world.last_change_tick();
// Repeatedly run the update function until it requests a break.
loop {
let control_flow = world.last_change_tick_scope(last_change_tick, |world| {
// Increment the change tick so we can detect changes from the previous update.
last_change_tick = world.change_tick();
world.increment_change_tick();
// Update once.
update_fn(world)
});
// End the loop when the closure returns `ControlFlow::Break`.
if control_flow.is_break() {
break;
}
}
}sourcepub fn check_change_ticks(&mut self)
pub fn check_change_ticks(&mut self)
Iterates all component change ticks and clamps any older than MAX_CHANGE_AGE.
This prevents overflow and thus prevents false positives.
Note: Does nothing if the World counter has not been incremented at least CHECK_TICK_THRESHOLD
times since the previous pass.
sourcepub fn clear_all(&mut self)
pub fn clear_all(&mut self)
Runs both clear_entities and clear_resources,
invalidating all Entity and resource fetches such as Res, ResMut
sourcepub fn clear_entities(&mut self)
pub fn clear_entities(&mut self)
Despawns all entities in this World.
sourcepub fn clear_resources(&mut self)
pub fn clear_resources(&mut self)
Clears all resources in this World.
Note: Any resource fetch to this World will fail unless they are re-initialized,
including engine-internal resources that are only initialized on app/world construction.
This can easily cause systems expecting certain resources to immediately start panicking. Use with caution.
sourcepub fn init_bundle<B>(&mut self) -> &BundleInfowhere
B: Bundle,
pub fn init_bundle<B>(&mut self) -> &BundleInfowhere
B: Bundle,
Initializes all of the components in the given Bundle and returns both the component
ids and the bundle id.
This is largely equivalent to calling init_component on each
component in the bundle.
source§impl World
impl World
sourcepub fn get_resource_by_id(&self, component_id: ComponentId) -> Option<Ptr<'_>>
pub fn get_resource_by_id(&self, component_id: ComponentId) -> Option<Ptr<'_>>
Gets a pointer to the resource with the id ComponentId if it exists.
The returned pointer must not be used to modify the resource, and must not be
dereferenced after the immutable borrow of the World ends.
You should prefer to use the typed API World::get_resource where possible and only
use this in cases where the actual types are not known at compile time.
sourcepub fn get_resource_mut_by_id(
&mut self,
component_id: ComponentId
) -> Option<MutUntyped<'_>>
pub fn get_resource_mut_by_id( &mut self, component_id: ComponentId ) -> Option<MutUntyped<'_>>
Gets a pointer to the resource with the id ComponentId if it exists.
The returned pointer may be used to modify the resource, as long as the mutable borrow
of the World is still valid.
You should prefer to use the typed API World::get_resource_mut where possible and only
use this in cases where the actual types are not known at compile time.
sourcepub fn iter_resources(&self) -> impl Iterator<Item = (&ComponentInfo, Ptr<'_>)>
pub fn iter_resources(&self) -> impl Iterator<Item = (&ComponentInfo, Ptr<'_>)>
Iterates over all resources in the world.
The returned iterator provides lifetimed, but type-unsafe pointers. Actually reading the contents of each resource will require the use of unsafe code.
§Examples
§Printing the size of all resources
let mut total = 0;
for (info, _) in world.iter_resources() {
println!("Resource: {}", info.name());
println!("Size: {} bytes", info.layout().size());
total += info.layout().size();
}
println!("Total size: {} bytes", total);§Dynamically running closures for resources matching specific TypeIds
// In this example, `A` and `B` are resources. We deliberately do not use the
// `bevy_reflect` crate here to showcase the low-level [`Ptr`] usage. You should
// probably use something like `ReflectFromPtr` in a real-world scenario.
// Create the hash map that will store the closures for each resource type
let mut closures: HashMap<TypeId, Box<dyn Fn(&Ptr<'_>)>> = HashMap::new();
// Add closure for `A`
closures.insert(TypeId::of::<A>(), Box::new(|ptr| {
// SAFETY: We assert ptr is the same type of A with TypeId of A
let a = unsafe { &ptr.deref::<A>() };
// ... do something with `a` here
}));
// Add closure for `B`
closures.insert(TypeId::of::<B>(), Box::new(|ptr| {
// SAFETY: We assert ptr is the same type of B with TypeId of B
let b = unsafe { &ptr.deref::<B>() };
// ... do something with `b` here
}));
// Iterate all resources, in order to run the closures for each matching resource type
for (info, ptr) in world.iter_resources() {
let Some(type_id) = info.type_id() else {
// It's possible for resources to not have a `TypeId` (e.g. non-Rust resources
// dynamically inserted via a scripting language) in which case we can't match them.
continue;
};
let Some(closure) = closures.get(&type_id) else {
// No closure for this resource type, skip it.
continue;
};
// Run the closure for the resource
closure(&ptr);
}sourcepub fn iter_resources_mut(
&mut self
) -> impl Iterator<Item = (&ComponentInfo, MutUntyped<'_>)>
pub fn iter_resources_mut( &mut self ) -> impl Iterator<Item = (&ComponentInfo, MutUntyped<'_>)>
Mutably iterates over all resources in the world.
The returned iterator provides lifetimed, but type-unsafe pointers. Actually reading from or writing to the contents of each resource will require the use of unsafe code.
§Example
// In this example, `A` and `B` are resources. We deliberately do not use the
// `bevy_reflect` crate here to showcase the low-level `MutUntyped` usage. You should
// probably use something like `ReflectFromPtr` in a real-world scenario.
// Create the hash map that will store the mutator closures for each resource type
let mut mutators: HashMap<TypeId, Box<dyn Fn(&mut MutUntyped<'_>)>> = HashMap::new();
// Add mutator closure for `A`
mutators.insert(TypeId::of::<A>(), Box::new(|mut_untyped| {
// Note: `MutUntyped::as_mut()` automatically marks the resource as changed
// for ECS change detection, and gives us a `PtrMut` we can use to mutate the resource.
// SAFETY: We assert ptr is the same type of A with TypeId of A
let a = unsafe { &mut mut_untyped.as_mut().deref_mut::<A>() };
// ... mutate `a` here
}));
// Add mutator closure for `B`
mutators.insert(TypeId::of::<B>(), Box::new(|mut_untyped| {
// SAFETY: We assert ptr is the same type of B with TypeId of B
let b = unsafe { &mut mut_untyped.as_mut().deref_mut::<B>() };
// ... mutate `b` here
}));
// Iterate all resources, in order to run the mutator closures for each matching resource type
for (info, mut mut_untyped) in world.iter_resources_mut() {
let Some(type_id) = info.type_id() else {
// It's possible for resources to not have a `TypeId` (e.g. non-Rust resources
// dynamically inserted via a scripting language) in which case we can't match them.
continue;
};
let Some(mutator) = mutators.get(&type_id) else {
// No mutator closure for this resource type, skip it.
continue;
};
// Run the mutator closure for the resource
mutator(&mut mut_untyped);
}sourcepub fn get_non_send_by_id(&self, component_id: ComponentId) -> Option<Ptr<'_>>
pub fn get_non_send_by_id(&self, component_id: ComponentId) -> Option<Ptr<'_>>
Gets a !Send resource to the resource with the id ComponentId if it exists.
The returned pointer must not be used to modify the resource, and must not be
dereferenced after the immutable borrow of the World ends.
You should prefer to use the typed API World::get_resource where possible and only
use this in cases where the actual types are not known at compile time.
§Panics
This function will panic if it isn’t called from the same thread that the resource was inserted from.
sourcepub fn get_non_send_mut_by_id(
&mut self,
component_id: ComponentId
) -> Option<MutUntyped<'_>>
pub fn get_non_send_mut_by_id( &mut self, component_id: ComponentId ) -> Option<MutUntyped<'_>>
Gets a !Send resource to the resource with the id ComponentId if it exists.
The returned pointer may be used to modify the resource, as long as the mutable borrow
of the World is still valid.
You should prefer to use the typed API World::get_resource_mut where possible and only
use this in cases where the actual types are not known at compile time.
§Panics
This function will panic if it isn’t called from the same thread that the resource was inserted from.
sourcepub fn remove_resource_by_id(&mut self, component_id: ComponentId) -> Option<()>
pub fn remove_resource_by_id(&mut self, component_id: ComponentId) -> Option<()>
Removes the resource of a given type, if it exists. Otherwise returns None.
You should prefer to use the typed API World::remove_resource where possible and only
use this in cases where the actual types are not known at compile time.
sourcepub fn remove_non_send_by_id(&mut self, component_id: ComponentId) -> Option<()>
pub fn remove_non_send_by_id(&mut self, component_id: ComponentId) -> Option<()>
Removes the resource of a given type, if it exists. Otherwise returns None.
You should prefer to use the typed API World::remove_resource where possible and only
use this in cases where the actual types are not known at compile time.
§Panics
This function will panic if it isn’t called from the same thread that the resource was inserted from.
sourcepub fn get_by_id(
&self,
entity: Entity,
component_id: ComponentId
) -> Option<Ptr<'_>>
pub fn get_by_id( &self, entity: Entity, component_id: ComponentId ) -> Option<Ptr<'_>>
Retrieves an immutable untyped reference to the given entity’s Component of the given ComponentId.
Returns None if the entity does not have a Component of the given type.
You should prefer to use the typed API World::get_mut where possible and only
use this in cases where the actual types are not known at compile time.
§Panics
This function will panic if it isn’t called from the same thread that the resource was inserted from.
sourcepub fn get_mut_by_id(
&mut self,
entity: Entity,
component_id: ComponentId
) -> Option<MutUntyped<'_>>
pub fn get_mut_by_id( &mut self, entity: Entity, component_id: ComponentId ) -> Option<MutUntyped<'_>>
Retrieves a mutable untyped reference to the given entity’s Component of the given ComponentId.
Returns None if the entity does not have a Component of the given type.
You should prefer to use the typed API World::get_mut where possible and only
use this in cases where the actual types are not known at compile time.
source§impl World
impl World
sourcepub fn add_schedule(&mut self, schedule: Schedule)
pub fn add_schedule(&mut self, schedule: Schedule)
Adds the specified Schedule to the world. The schedule can later be run
by calling .run_schedule(label) or by directly
accessing the Schedules resource.
The Schedules resource will be initialized if it does not already exist.
sourcepub fn try_schedule_scope<R>(
&mut self,
label: impl ScheduleLabel,
f: impl FnOnce(&mut World, &mut Schedule) -> R
) -> Result<R, TryRunScheduleError>
pub fn try_schedule_scope<R>( &mut self, label: impl ScheduleLabel, f: impl FnOnce(&mut World, &mut Schedule) -> R ) -> Result<R, TryRunScheduleError>
Temporarily removes the schedule associated with label from the world,
runs user code, and finally re-adds the schedule.
This returns a TryRunScheduleError if there is no schedule
associated with label.
The Schedule is fetched from the Schedules resource of the world by its label,
and system state is cached.
For simple cases where you just need to call the schedule once,
consider using World::try_run_schedule instead.
For other use cases, see the example on World::schedule_scope.
sourcepub fn schedule_scope<R>(
&mut self,
label: impl ScheduleLabel,
f: impl FnOnce(&mut World, &mut Schedule) -> R
) -> R
pub fn schedule_scope<R>( &mut self, label: impl ScheduleLabel, f: impl FnOnce(&mut World, &mut Schedule) -> R ) -> R
Temporarily removes the schedule associated with label from the world,
runs user code, and finally re-adds the schedule.
The Schedule is fetched from the Schedules resource of the world by its label,
and system state is cached.
§Examples
// Run the schedule five times.
world.schedule_scope(MySchedule, |world, schedule| {
for _ in 0..5 {
schedule.run(world);
}
});For simple cases where you just need to call the schedule once,
consider using World::run_schedule instead.
§Panics
If the requested schedule does not exist.
sourcepub fn try_run_schedule(
&mut self,
label: impl ScheduleLabel
) -> Result<(), TryRunScheduleError>
pub fn try_run_schedule( &mut self, label: impl ScheduleLabel ) -> Result<(), TryRunScheduleError>
Attempts to run the Schedule associated with the label a single time,
and returns a TryRunScheduleError if the schedule does not exist.
The Schedule is fetched from the Schedules resource of the world by its label,
and system state is cached.
For simple testing use cases, call Schedule::run(&mut world) instead.
sourcepub fn run_schedule(&mut self, label: impl ScheduleLabel)
pub fn run_schedule(&mut self, label: impl ScheduleLabel)
Runs the Schedule associated with the label a single time.
The Schedule is fetched from the Schedules resource of the world by its label,
and system state is cached.
For simple testing use cases, call Schedule::run(&mut world) instead.
§Panics
If the requested schedule does not exist.
sourcepub fn allow_ambiguous_component<T>(&mut self)where
T: Component,
pub fn allow_ambiguous_component<T>(&mut self)where
T: Component,
Ignore system order ambiguities caused by conflicts on Components of type T.
sourcepub fn allow_ambiguous_resource<T>(&mut self)where
T: Resource,
pub fn allow_ambiguous_resource<T>(&mut self)where
T: Resource,
Ignore system order ambiguities caused by conflicts on Resources of type T.
Trait Implementations§
source§impl DirectAssetAccessExt for World
impl DirectAssetAccessExt for World
source§fn add_asset<'a, A>(&mut self, asset: impl Into<A>) -> Handle<A>where
A: Asset,
fn add_asset<'a, A>(&mut self, asset: impl Into<A>) -> Handle<A>where
A: Asset,
Insert an asset similarly to Assets::add.
§Panics
If self doesn’t have an AssetServer resource initialized yet.
source§fn load_asset<'a, A>(&self, path: impl Into<AssetPath<'a>>) -> Handle<A>where
A: Asset,
fn load_asset<'a, A>(&self, path: impl Into<AssetPath<'a>>) -> Handle<A>where
A: Asset,
Load an asset similarly to AssetServer::load.
§Panics
If self doesn’t have an AssetServer resource initialized yet.
source§fn load_asset_with_settings<'a, A, S>(
&self,
path: impl Into<AssetPath<'a>>,
settings: impl Fn(&mut S) + Send + Sync + 'static
) -> Handle<A>
fn load_asset_with_settings<'a, A, S>( &self, path: impl Into<AssetPath<'a>>, settings: impl Fn(&mut S) + Send + Sync + 'static ) -> Handle<A>
Load an asset with settings, similarly to AssetServer::load_with_settings.
§Panics
If self doesn’t have an AssetServer resource initialized yet.
source§impl<F> EntityCommand<World> for F
impl<F> EntityCommand<World> for F
source§fn with_entity(self, id: Entity) -> WithEntity<Marker, Self>where
Self: Sized,
fn with_entity(self, id: Entity) -> WithEntity<Marker, Self>where
Self: Sized,
source§impl<'w> From<&'w mut World> for DeferredWorld<'w>
impl<'w> From<&'w mut World> for DeferredWorld<'w>
source§fn from(world: &'w mut World) -> DeferredWorld<'w>
fn from(world: &'w mut World) -> DeferredWorld<'w>
source§impl RunSystemOnce for &mut World
impl RunSystemOnce for &mut World
source§fn run_system_once_with<T, In, Out, Marker>(self, input: In, system: T) -> Outwhere
T: IntoSystem<In, Out, Marker>,
fn run_system_once_with<T, In, Out, Marker>(self, input: In, system: T) -> Outwhere
T: IntoSystem<In, Out, Marker>,
source§fn run_system_once<T, Out, Marker>(self, system: T) -> Outwhere
T: IntoSystem<(), Out, Marker>,
fn run_system_once<T, Out, Marker>(self, system: T) -> Outwhere
T: IntoSystem<(), Out, Marker>,
source§impl SystemParam for &World
impl SystemParam for &World
§type Item<'w, 's> = &'w World
type Item<'w, 's> = &'w World
Self, instantiated with new lifetimes. Read moresource§fn init_state(
_world: &mut World,
system_meta: &mut SystemMeta
) -> <&World as SystemParam>::State
fn init_state( _world: &mut World, system_meta: &mut SystemMeta ) -> <&World as SystemParam>::State
World access used by this SystemParam
and creates a new instance of this param’s State.source§unsafe fn get_param<'w, 's>(
_state: &'s mut <&World as SystemParam>::State,
_system_meta: &SystemMeta,
world: UnsafeWorldCell<'w>,
_change_tick: Tick
) -> <&World as SystemParam>::Item<'w, 's>
unsafe fn get_param<'w, 's>( _state: &'s mut <&World as SystemParam>::State, _system_meta: &SystemMeta, world: UnsafeWorldCell<'w>, _change_tick: Tick ) -> <&World as SystemParam>::Item<'w, 's>
SystemParamFunction. Read moresource§unsafe fn new_archetype(
state: &mut Self::State,
archetype: &Archetype,
system_meta: &mut SystemMeta
)
unsafe fn new_archetype( state: &mut Self::State, archetype: &Archetype, system_meta: &mut SystemMeta )
Archetype, registers the components accessed by this SystemParam (if applicable).a Read moresource§fn apply(state: &mut Self::State, system_meta: &SystemMeta, world: &mut World)
fn apply(state: &mut Self::State, system_meta: &SystemMeta, world: &mut World)
SystemParam’s state.
This is used to apply Commands during apply_deferred.source§fn queue(
state: &mut Self::State,
system_meta: &SystemMeta,
world: DeferredWorld<'_>
)
fn queue( state: &mut Self::State, system_meta: &SystemMeta, world: DeferredWorld<'_> )
apply_deferred.impl<'w> ReadOnlySystemParam for &'w World
SAFETY: only reads world
impl Send for World
impl Sync for World
Auto Trait Implementations§
impl !Freeze for World
impl !RefUnwindSafe for World
impl Unpin for World
impl UnwindSafe for World
Blanket Implementations§
source§impl<T, U> AsBindGroupShaderType<U> for T
impl<T, U> AsBindGroupShaderType<U> for T
source§fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U
fn as_bind_group_shader_type(&self, _images: &RenderAssets<GpuImage>) -> U
T ShaderType for self. When used in AsBindGroup
derives, it is safe to assume that all images in self exist.source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can
then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be
further downcast into Rc<ConcreteType> where ConcreteType implements Trait.source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &Any’s vtable from &Trait’s.source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &mut Any’s vtable from &mut Trait’s.source§impl<T> DowncastSync for T
impl<T> DowncastSync for T
source§impl<S> FromSample<S> for S
impl<S> FromSample<S> for S
fn from_sample_(s: S) -> S
source§impl<T> FromWorld for Twhere
T: Default,
impl<T> FromWorld for Twhere
T: Default,
source§fn from_world(_world: &mut World) -> T
fn from_world(_world: &mut World) -> T
Self using data from the given World.